Existence conditions for symmetric strong vector quasi-equilibrium problems
Creators
- 1. Ho Chi Minh City University of Technology
- 2. Vietnam National University Ho Chi Minh City
Description
In the following paper, the symmetric strong vector quasi-equilibrium problems will be studied thoroughly. Afterward, the existence conditions of solution sets for these problems has been established. The results which are presented in this paper improve and extend the main results mentioned in the literature. Our results can be illustrated by some interesting examples. In 1994, Noor and Oettli introduced the following the symmetric scalar quasi-equilibrium problem. This problem is one of the generalization of the symmetric scalar quasi-equilibrium problem which is presented by Noor and Oettli. Since then, the symmetric vector quasi-equilibrium problem has been investigated by a huge number of authors in different ways. The research works mentioned above are one of our motivation to improve and extend the problem. So, in this paper, we will introduce the vector quasi-equilibrium problems. Afterward, some existence conditions of solution sets for these problems will be established. The symmetric vector quasi-equilibrium problems consist of many optimization - related models namely symmetric vector quasi-variational inequality problems, fixed point problems, coincidence-point problems and complementarity problems, etc. In recent years, a lot of results for existence of solutions for symmetric vector quasi-equilibrium problems, vector quasi-equilibrium problems, vector quasivariational inequality problems and optimization problems have been established by many authors in different ways. We will present our work in the following steps. In the first section of our paper, we will introduce the model of symmetric vector quasi-equilibrium problems. In the following section, we recall definitions, lemmas which can be used for the main results. In the last section, we will establish some conditions for existence and closedness of the solutions set by applying fixed-point theorem for symmetric vector quasi-equilibrium problems. The results presented in this paper improve and extend the main results in the literature. Some examples are given to illustrate our results. Hence our results, Theorem 3.1 and Theorem 3.6 have significant improvements.
Translated Descriptions
Translated Description (Arabic)
في الورقة التالية، ستتم دراسة مشاكل شبه التوازن المتجهية القوية المتماثلة بدقة. بعد ذلك، تم وضع شروط وجود مجموعات الحل لهذه المشاكل. تعمل النتائج المعروضة في هذه الورقة على تحسين وتوسيع نطاق النتائج الرئيسية المذكورة في الأدبيات. يمكن توضيح نتائجنا من خلال بعض الأمثلة المثيرة للاهتمام. في عام 1994، قدم نور وأوتلي ما يلي مشكلة شبه التوازن القياسي المتماثل. هذه المشكلة هي واحدة من تعميم مشكلة شبه التوازن القياسي المتماثل التي قدمها نور وأوتلي. منذ ذلك الحين، تم التحقيق في مشكلة شبه توازن المتجه المتماثل من قبل عدد كبير من المؤلفين بطرق مختلفة. تعد الأعمال البحثية المذكورة أعلاه أحد دوافعنا لتحسين المشكلة وتوسيع نطاقها. لذلك، في هذه الورقة، سوف نقدم مسائل شبه التوازن المتجهية. بعد ذلك، سيتم وضع بعض شروط وجود مجموعات الحلول لهذه المشاكل. تتكون مشكلات شبه توازن المتجه المتماثل من العديد من النماذج ذات الصلة بالتحسين وهي مشكلات المتجه المتماثل شبه المتغير ومشكلات النقطة الثابتة ومشكلات نقطة المصادفة ومشكلات التكامل وما إلى ذلك. في السنوات الأخيرة، تم إنشاء الكثير من النتائج لوجود حلول لمشكلات شبه توازن المتجه المتماثل ومشكلات شبه توازن المتجه ومشكلات عدم المساواة شبه المتغير المتجه ومشكلات التحسين من قبل العديد من المؤلفين بطرق مختلفة. سنقدم عملنا في الخطوات التالية. في القسم الأول من ورقتنا، سنقدم نموذج مسائل شبه توازن المتجه المتماثل. في القسم التالي، نتذكر التعريفات، الليما التي يمكن استخدامها للنتائج الرئيسية. في القسم الأخير، سنضع بعض الشروط لوجود وإغلاق الحلول المحددة من خلال تطبيق نظرية النقطة الثابتة لمشاكل شبه توازن المتجه المتماثل. تعمل النتائج المقدمة في هذه الورقة على تحسين وتوسيع نطاق النتائج الرئيسية في الأدبيات. يتم إعطاء بعض الأمثلة لتوضيح نتائجنا. لذلك فإن نتائجنا، النظرية 3.1 والنظرية 3.6 لها تحسينات كبيرة.Translated Description (English)
In the following paper, the symmetric strong vector quasi-equilibrium problems will be studied thoroughly. Afterward, the existence conditions of solution sets for these problems has been established. The results which are presented in this paper improve and extend the main results mentioned in the literature. Our results can be illustrated by some interesting examples. In 1994, Noor and Oettli introduced the following the symmetric scalar quasi-equilibrium problem. This problem is one of the generalization of the symmetric scalar quasi-equilibrium problem which is presented by Noor and Oettli. Since then, the symmetric vector quasi-equilibrium problem has been investigated by a huge number of authors in different ways. The research works mentioned above are one of our motivation to improve and extend the problem. So, in this paper, we will introduce the vector quasi-equilibrium problems. Afterward, some existence conditions of solution sets for these problems will be established. The symmetric vector quasi-equilibrium problems consist of many optimization - related models namely symmetric vector quasi-variational inequality problems, fixed point problems, coincidence-point problems and complementarity problems, etc. In recent years, a lot of results for existence of solutions for symmetric vector quasi-equilibrium problems, vector quasi-equilibrium problems, vector quasivariational inequality problems and optimization problems have been established by many authors in different ways. We will present our work in the following steps. In the first section of our paper, we will introduce the model of symmetric vector quasi-equilibrium problems. In the following section, we recall definitions, lemmas which can be used for the main results. In the last section, we will establish some conditions for existence and closedness of the solutions set by applying fixed-point theorem for symmetric vector quasi-equilibrium problems. The results presented in this paper improve and extend the main results in the literature. Some examples are given to illustrate our results. Therefore our results, Theorem 3.1 and Theorem 3.6 have significant improvements.Translated Description (Spanish)
In the following paper, the symmetric strong vector quasi-equilibrium problems will be studied thoroughly. Afterward, the existence conditions of solution sets for these problems has been established. The results which are presentd in this paper improve and extend the main results mentioned in the literature. Our results can be illustrated by some interesting examples. En 1994, Noor and Oettli introduced the following the symmetric scalar quasi-equilibrium problem. This problem is one of the generalization of the symmetric scalar quasi-equilibrium problem which is presentd by Noor and Oettli. Since then, the symmetric vector quasi-equilibrium problem has been investigated by a huge number of authors in different ways. The research works mentioned above are one of our motivation to improve and extend the problem. So, in this paper, we will introduce the vector quasi-equilibrium problems. Afterward, some existence conditions of solution sets for these problems will be established. The symmetric vector quasi-equilibrium problems consist of many optimization - related models namely symmetric vector quasi-variational inequality problems, fixed point problems, coincidence-point problems and complementarity problems, etc. In recent years, a lot of results for existence of solutions for symmetric vector quasi-equilibrium problems, vector quasi-equilibrium problems, vector quasivariational inequality problems and optimization problems have been established by many authors in different ways. We will present our work in the following steps. In the first section of our paper, we will introduce the model of symmetric vector quasi-equilibrium problems. In the following section, we recall definitions, lemmas which can be used for the main results. In the last section, we will establish some conditions for existence and closedness of the solutions set by applying fixed-point theorem for symmetric vector quasi-equilibrium problems. The results presentd in this paper improve and extend the main results in the literature. Some examples are given to illustrate our results. Hence our results, Theorem 3.1 and Theorem 3.6 have significant improvements.Files
1020.pdf
Files
(1.1 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:43e5df081f994f6cdf6ec852783401d3
|
1.1 MB | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- الظروف الحالية لمشاكل شبه توازن المتجهات القوية المتماثلة
- Translated title (English)
- Existence conditions for symmetric strong vector quasi-equilibrium problems
- Translated title (Spanish)
- Existence conditions for symmetric strong vector quasi-equilibrium problems
Identifiers
- Other
- https://openalex.org/W3115963649
- DOI
- 10.32508/stdjet.v3isi3.638