RESOLUÇÃO DO PROBLEMA DOS K-MEDOIDS VIA ALGORITMO GENÉTICO DE CHAVES ALEATÓRIAS VICIADAS
- 1. Brazilian Institute of Geography and Statistics
- 2. Universidade Federal Fluminense
- 3. Centro Universitário Anhanguera
Description
This paper proposes a new Optimization Algorithm for the k-medoid Clustering Problem.In this problem, given a dataset X with n objects and f attributes and a fixed number of clusters (k), it is necessary to select k objects called medoids.Each medoid creates a new cluster and the remaining (n-k) objects should be placed into nearest of these clusters, according a distance measure.The goal is minimize the sum of distances between each object and the medoid of its group.This work presents a new algorithm that considers concepts of Biased Random-key Genetic Algorithm.Besides, an approach of path-relinking procedure is related.The computational experiments results are presented in the last section.It was used thirty instances, among well-known datasets of the literature and new datasets artificially constructed.The proposed heuristics are compared with five approaches (four algorithms and one exact method) and the presented algorithms are a alternative and effective way to solve the problem.
Translated Descriptions
Translated Description (Arabic)
تقترح هذه الورقة خوارزمية تحسين جديدة لمشكلة تجميع k - medoid. في هذه المشكلة، بالنظر إلى مجموعة البيانات X مع كائنات n و سمات f وعدد ثابت من المجموعات (k)، من الضروري تحديد كائنات k تسمى medoid. ينشئ كل medoid مجموعة جديدة ويجب وضع كائنات (n - k) المتبقية في أقرب هذه المجموعات، وفقًا لقياس المسافة. الهدف هو تقليل مجموع المسافات بين كل كائن ومتوسط مجموعته. يقدم هذا العمل خوارزمية جديدة تأخذ في الاعتبار مفاهيم الخوارزمية الوراثية العشوائية المتحيزة. إلى جانب ذلك، يرتبط نهج إجراء ربط المسار. يتم تقديم نتائج التجارب الحسابية في القسم الأخير. تم استخدامه ثلاثين مرة، من بين مجموعات البيانات المعروفة للأدبيات ومجموعات البيانات الجديدة التي تم بناؤها بشكل مصطنع. تتم مقارنة الاستدلال المقترح بخمسة مناهج (أربع خوارزميات وطريقة دقيقة واحدة) والخوارزميات المقدمة هي طريقة بديلة وفعالة لحل المشكلة.Translated Description (English)
This paper proposes a new Optimization Algorithm for the k-medoid Clustering Problem.In this problem, given a dataset X with n objects and f attributes and a fixed number of clusters (k), it is necessary to select k objects called medoids.Each medoid creates a new cluster and the remaining (n-k) objects should be placed into nearest of these clusters, according to a distance measure.The goal is minimize the sum of distances between each object and the medoid of its group.This work presents a new algorithm that considers concepts of Biased Random-key Genetic Algorithm.Besides, an approach of path-relinking procedure is related.The computational experiments results are presented in the last section.It was used thirty instances, among well-known datasets of the literature and new datasets artificially constructed.The proposed heuristics are compared with five approaches (four algorithms and one exact method) and the presented algorithms are an alternative and effective way to solve the problem.Translated Description (French)
This paper proposes a new Optimization Algorithm for the k-medoid Clustering Problem.In this problem, given a dataset X with n objects and f attributes and a fixed number of clusters (k), it is necessary to select k objects called medoids.Each medoid creates a new cluster and the remaining (n-k) objects should be placed into nearest of these clusters, according a distance measure.The goal is minimize the sum of distances between each object and the medoid of its group.This work presents a new algorithm that considers concepts of Biased Random-key Genetic Algorithm.Bes, an approach of path-relinking proce is related.The computation experal results areented in the section.It was used thirty instances, am well-known datasets of the literature and artificiets artificially constructed.Theed proposed hearted comparetics a faches (algorithm approd and algorithm and algorithm and a efficient to the efficiently problem.Translated Description (Spanish)
This paper proposes a new Optimization Algorithm for the k-medoid Clustering Problem.In this problem, given a dataset X with n objects and f attributes and a fixed number of clusters (k), it is necessary to select k objects called medoids.Each medoid creates a new cluster and the remaining (n-k) objects should be placed into nearest of these clusters, according a distance measure.The goal is minimize the sum of distances between each object and the medoid of its group.This works a new algorithm that considers concepts of Biased Random-key Genetic Algorithm.Besides, anproach of path-relinking procedure is related.The computational experiments arevents are presented in the last section.It was tirty used instance, am wellelling ways of biased Random-key Genetic Algorithm.Besides, anproach of path-relinking procedure is related.The computational experiments areducts aretat in the last section.Ith used used instance that used instances, wellings of the new concepts of biased Random-key and the new creations of biased k-key Genetic Algorithm.Besides.Files
125771.pdf.pdf
Files
(213.5 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:3ec62a00246451df9c5bc5d5d6b5ede3
|
213.5 kB | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- RESOLUÇAO DO BOBLICA DOS K - MEDOIDS VIA ALGORITMO GENETICO DE CHAVES ALEATORIAS VICIADAS
- Translated title (English)
- RESOLUÇÃO DO PROBLEMA DOS K-MEDOIDS VIA ALGORITMO GENÉTICO DE CHAVES ALEATÓRIAS VICIADAS
- Translated title (French)
- RESOLUÇÃO DO PROBLEMA DOS K-MEDOIDS VIA ALGORITMO GENÉTICO DE CHAVES ALEATÓRIAS VICIADAS
- Translated title (Spanish)
- RESOLUÇÃO DO PROBLEMA DOS K-MEDOIDS VIA ALGORITMO GENÉTICO DE CHAVES ALÉATÓRIAS VICIADAS
Identifiers
- Other
- https://openalex.org/W2118501254
- DOI
- 10.5151/marine-spolm2014-125771
References
- https://openalex.org/W325597738