Published December 29, 2020 | Version v1
Publication Open

Evaluating supervised classification methods in urban environments using UAV images

Description

The use, commerce and technological development of Unmanned Aerial Vehicles (UAV's) is advancing every year with different proposals and applications in different fields of Science. Not too many years ago, aerial studies depended exclusively on images taken from airplanes and images derived from satellites, which usually represent high cost. Image classification allows the production of thematic maps and also allows the user to create an image with well distinguished classes with a good level of accuracy. In the 00's this process was mainly used in satellite images, but with the expansion of the UAV, new processes and techniques are starting to develop along. This article had the purpose of testing the accuracy of classification through kappa and tau statistics using different classifiers (Maxver, Maxver-ICM and Euclidean Distance) in aerial images, two with a short number of details and better distinguished classes and an orthophoto containing a high number of features.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

يتقدم استخدام الطائرات بدون طيار وتجارتها وتطويرها التكنولوجي كل عام بمقترحات وتطبيقات مختلفة في مجالات العلوم المختلفة. قبل سنوات قليلة، كانت الدراسات الجوية تعتمد حصريًا على الصور المأخوذة من الطائرات والصور المستمدة من الأقمار الصناعية، والتي عادة ما تمثل تكلفة عالية. يسمح تصنيف الصور بإنتاج خرائط موضوعية ويسمح أيضًا للمستخدم بإنشاء صورة بفصول متميزة جيدًا بمستوى جيد من الدقة. في القرن الحادي والعشرين، تم استخدام هذه العملية بشكل أساسي في صور الأقمار الصناعية، ولكن مع توسع الطائرات بدون طيار، بدأت عمليات وتقنيات جديدة في التطور. كان الغرض من هذه المقالة هو اختبار دقة التصنيف من خلال إحصائيات كابا وتاو باستخدام مصنفات مختلفة (Maxver و Maxver - ICM و Euclidean Distance) في الصور الجوية، اثنان مع عدد قصير من التفاصيل وفئات مميزة بشكل أفضل وصورة عمودية تحتوي على عدد كبير من الميزات.

Translated Description (French)

L'utilisation, le commerce et le développement technologique des véhicules aériens sans pilote (UAV) progressent chaque année avec différentes propositions et applications dans différents domaines de la science. Il n'y a pas si longtemps, les études aériennes dépendaient exclusivement d'images prises à partir d'avions et d'images dérivées de satellites, ce qui représente généralement un coût élevé. La classification d'images permet la production de cartes thématiques et permet également à l'utilisateur de créer une image avec des classes bien distinguées avec un bon niveau de précision. Dans les années 2000, ce processus était principalement utilisé dans les images satellites, mais avec l'expansion de l'UAV, de nouveaux processus et techniques commencent à se développer. Cet article avait pour but de tester l'exactitude de la classification par le biais de statistiques kappa et tau à l'aide de différents classificateurs (Maxver, Maxver-ICM et Euclidean Distance) dans des images aériennes, deux avec un petit nombre de détails et des classes mieux distinguées et une orthophoto contenant un grand nombre de caractéristiques.

Translated Description (Spanish)

El uso, comercio y desarrollo tecnológico de los Vehículos Aéreos No Tripulados (UAV 's) avanza cada año con diferentes propuestas y aplicaciones en diferentes campos de la Ciencia. No hace demasiados años, los estudios aéreos dependían exclusivamente de imágenes tomadas desde aviones e imágenes derivadas de satélites, que suelen representar un alto coste. La clasificación de imágenes permite la producción de mapas temáticos y también permite al usuario crear una imagen con clases bien distinguidas con un buen nivel de precisión. En los años 00, este proceso se utilizó principalmente en imágenes satelitales, pero con la expansión del UAV, se están comenzando a desarrollar nuevos procesos y técnicas. Este artículo tenía el propósito de probar la precisión de la clasificación a través de estadísticas kappa y tau utilizando diferentes clasificadores (Maxver, Maxver-ICM y Distancia Euclidiana) en imágenes aéreas, dos con un número corto de detalles y clases mejor distinguidas y una ortofoto que contiene un alto número de características.

Files

6-25-150-1-ED.pdf.pdf

Files (729.8 kB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:955d50c13cd6dcfd6bf55bb23a3792db
729.8 kB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
تقييم طرق التصنيف الخاضعة للإشراف في البيئات الحضرية باستخدام صور الطائرات بدون طيار
Translated title (French)
Évaluation des méthodes de classification supervisées en milieu urbain à l'aide d'images d'UAV
Translated title (Spanish)
Evaluación de métodos de clasificación supervisados en entornos urbanos utilizando imágenes de UAV

Identifiers

Other
https://openalex.org/W3133288660
DOI
10.5281/zenodo.4584437

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Brazil