Published July 6, 2020 | Version v1
Publication

A NEW NUMERICAL TREATMENT FOR FRACTIONAL DIFFERENTIAL EQUATIONS BASED ON NON-DISCRETIZATION OF DATA USING LAGUERRE POLYNOMIALS

  • 1. University of Malakand
  • 2. Prince Sultan University
  • 3. China Medical University
  • 4. Asia University
  • 5. Çankaya University

Description

In this research work, we discuss an approximation techniques for boundary value problems (BVPs) of differential equations having fractional order (FODE). We avoid the method from discretization of data by applying polynomials of Laguerre and developed some matrices of operational types for the obtained numerical solution. By applying the operational matrices, the given problem is converted to some algebraic equation which on evaluation gives the required numerical results. These equations are of Sylvester types and can be solved by using matlab. We present some testing examples to ensure the correctness of the considered techniques.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

في هذا العمل البحثي، نناقش تقنيات تقريبية لمسائل القيمة الحدية (BVPs) للمعادلات التفاضلية ذات الترتيب الكسري (FODE). نتجنب طريقة تقطيع البيانات من خلال تطبيق متعددات حدود لاغوير وتطوير بعض المصفوفات من الأنواع التشغيلية للحل العددي الذي تم الحصول عليه. من خلال تطبيق المصفوفات التشغيلية، يتم تحويل المسألة المعطاة إلى معادلة جبرية تعطي عند التقييم النتائج العددية المطلوبة. هذه المعادلات من أنواع سيلفستر ويمكن حلها باستخدام ماتلاب. نقدم بعض أمثلة الاختبار لضمان صحة التقنيات التي تم النظر فيها.

Translated Description (English)

In this research work, we discuss an approximation techniques for boundary value problems (BVPs) of differential equations having fractional order (FODE). We avoid the method of discretization of data by applying polynomials of Laguerre and developed some matrices of operational types for the obtained numerical solution. By applying the operational matrices, the given problem is converted to some algebraic equation which on evaluation gives the required numerical results. These equations are of Sylvester types and can be solved by using matlab. We present some testing examples to ensure the correctness of the techniques considered.

Translated Description (French)

Dans ce travail de recherche, nous discutons d'une approximation des techniques pour les problèmes de valeur limite (BVP) des équations différentielles ayant un ordre fractionnaire (FODE). We avoid the method from discretization of data by applying polynomials of Laguerre and developed some matrices of operational types for the obtained numerical solution. By applying the operational matrices, the given problem is converted to some algebraic equation which on evaluation gives the required numerical results. These equations are of Sylvester types and can be solved by using matlab. We present some testing examples to ensure the correctness of the considered techniques.

Translated Description (Spanish)

In this research work, we discuss an aproximation techniques for boundary value problems (BVPs) of differential equations having fractional order (FODE). We avoid the method from discretization of data by applying polynomials of Laguerre and developed some matrices of operational types for the obtained numerical solution. By applying the operational matrices, the given problem is converted to some algebraic equation which on evaluation gives the required numerical results. These equations are of Sylvester types and can be solved by using matlab. We present some testing examples to ensure the correctness of the considered techniques.

Additional details

Additional titles

Translated title (Arabic)
معالجة رقمية جديدة للمعادلات التفاضلية الكسرية بناءً على عدم تفكيك البيانات باستخدام متعددات حدود LAGUERRE
Translated title (English)
A NEW NUMERICAL TREATMENT FOR FRACTIONAL DIFFERENTIAL EQUATIONS BASED ON NON-DISCRETIZATION OF DATA USING LAGUERRE POLYNOMIALS
Translated title (French)
A NEW NUMERICAL TREATMENT FOR FRACTIONAL DIFFERENTIAL EQUATIONS BASED ON NON-DISCRETIZATION OF DATA USING LAGUERRE POLYNOMIALS
Translated title (Spanish)
A NEW NUMERICAL TREATMENT FOR FRACTIONAL DIFFERENTIAL EQUATIONS BASED ON NON-DISCRETIZATION OF DATA USING LAGUERRE POLYNOMIALS

Identifiers

Other
https://openalex.org/W3021322547
DOI
10.1142/s0218348x20400460

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Turkey

References

  • https://openalex.org/W120656957
  • https://openalex.org/W1584611818
  • https://openalex.org/W1969446688
  • https://openalex.org/W1971200514
  • https://openalex.org/W1971361435
  • https://openalex.org/W1975383112
  • https://openalex.org/W1978848705
  • https://openalex.org/W1981313876
  • https://openalex.org/W1988892282
  • https://openalex.org/W1994916853
  • https://openalex.org/W2007553558
  • https://openalex.org/W2010917710
  • https://openalex.org/W2018517858
  • https://openalex.org/W2035917572
  • https://openalex.org/W2039324033
  • https://openalex.org/W2048313647
  • https://openalex.org/W2086188812
  • https://openalex.org/W2094012975
  • https://openalex.org/W2097850019
  • https://openalex.org/W2116807840
  • https://openalex.org/W2135359007
  • https://openalex.org/W2297242034
  • https://openalex.org/W2313152213
  • https://openalex.org/W2488797671
  • https://openalex.org/W2496913885
  • https://openalex.org/W2605896013
  • https://openalex.org/W2739375899
  • https://openalex.org/W2903744803
  • https://openalex.org/W2963010124
  • https://openalex.org/W4301223505