AN EFFECTIVE DATA MINING APPROACH FOR ASSESSING STUDENT'S SATISFACTION IN ONLINE EDUCATION DURING COVID-19 PANDEMIC
- 1. University of Faisalabad
Description
The advent of the COVID-19 outbreak has caused widespread public-health concerns. As a result of these emergency conditions, several governments have opted to implement lockdowns to reduce social interaction and minimize infection. COVID-19 has significantly impacted Higher Education Organizations (HEOs). Many unorthodox educational methods are proposed to ensure the continuation of the learning system in light of the effects of this pandemic and the necessity for alternative remedies. Online Education (OE), also based on learning together in a synchronous or asynchronous environment by employing various equipment, including mobile devices, Computers, and so forth, for Internet access, was among the options. All education systems are primarily concerned with boosting students' academic achievement to improve the overall standard of teaching. In this regard, Educational Data Mining (EDM) seems to be an expeditiously growing field of research that employs the significance of Data Mining (DM) ideas to assist the education system in determining valuable information just on Student Satisfaction Learning (SSL) with both Online Learning procedure (OL) as during COVID-19. Various approaches have been explored using EDM to forecast students' behaviors to provide the optimum educational settings. As a result, Feature Selection (FS) was commonly used to find one of the most indicates. the status of characteristics with the least cardinality. For COVID-19 to find accuracy result in this research KNN and SVM algorithm used by using modified data set from Kaggle. Results showed 79.9% precision of education level wise prediction using KNN, 73.7% precision of devices wise prediction using KNN and 88.5% precision of educational level wise predication using SVM, 73.8% precision of device wise prediction using SVM which is showing that the proposed model is significant.
Translated Descriptions
Translated Description (Arabic)
تسبب ظهور تفشي COVID -19 في مخاوف صحية عامة واسعة النطاق. نتيجة لظروف الطوارئ هذه، اختارت العديد من الحكومات تنفيذ عمليات الإغلاق للحد من التفاعل الاجتماعي وتقليل العدوى. أثر COVID -19 بشكل كبير على منظمات التعليم العالي (HEOs). يتم اقتراح العديد من الأساليب التعليمية غير التقليدية لضمان استمرار نظام التعلم في ضوء آثار هذه الجائحة وضرورة إيجاد علاجات بديلة. كان التعليم عبر الإنترنت (OE)، الذي يعتمد أيضًا على التعلم معًا في بيئة متزامنة أو غير متزامنة من خلال استخدام معدات مختلفة، بما في ذلك الأجهزة المحمولة وأجهزة الكمبيوتر وما إلى ذلك، للوصول إلى الإنترنت، من بين الخيارات. تهتم جميع أنظمة التعليم في المقام الأول بتعزيز التحصيل الدراسي للطلاب لتحسين المستوى العام للتدريس. في هذا الصدد، يبدو أن استخراج البيانات التعليمية (EDM) مجال بحث سريع النمو يستخدم أهمية أفكار استخراج البيانات (DM) لمساعدة النظام التعليمي في تحديد المعلومات القيمة فقط حول تعلم رضا الطلاب (SSL) مع كل من إجراء التعلم عبر الإنترنت (OL) كما هو الحال أثناء COVID -19. تم استكشاف مناهج مختلفة باستخدام EDM للتنبؤ بسلوكيات الطلاب لتوفير الإعدادات التعليمية المثلى. ونتيجة لذلك، تم استخدام اختيار الميزة (FS) بشكل شائع للعثور على واحدة من أكثر المؤشرات. حالة الخصائص الأقل أهمية. لكي يجد كوفيد-19 نتيجة دقيقة في خوارزمية KNN و SVM المستخدمة في هذا البحث باستخدام مجموعة بيانات معدلة من Kaggle. أظهرت النتائج 79.9 ٪ من دقة التنبؤ بمستوى التعليم باستخدام KNN، و 73.7 ٪ من دقة التنبؤ بالأجهزة باستخدام KNN و 88.5 ٪ من دقة التنبؤ بالمستوى التعليمي باستخدام SVM، و 73.8 ٪ من دقة التنبؤ بالأجهزة باستخدام SVM مما يدل على أن النموذج المقترح مهم.Translated Description (English)
The advent of the COVID-19 outbreak has caused widespread public-health concerns. As a result of these emergency conditions, several governments have opted to implement lockdowns to reduce social interaction and minimize infection. COVID-19 has significantly impacted Higher Education Organizations (HEOs). Many unorthodox educational methods are proposed to ensure the continuation of the learning system in light of the effects of this pandemic and the necessity for alternative remedies. Online Education (OE), also based on learning together in a synchronous or asynchronous environment by employing various equipment, including mobile devices, computers, and so forth, for Internet access, was among the options. All education systems are primarily concerned with boosting students' academic achievement to improve the overall standard of teaching. In this regard, Educational Data Mining (EDM) seems to be an expeditiously growing field of research that employs the significance of Data Mining (DM) ideas to assist the education system in determining valuable information just on Student Satisfaction Learning (SSL) with both Online Learning procedure (OL) as during COVID-19. Various approaches have been explored using EDM to forecast students' behaviors to provide the optimal educational settings. As a result, Feature Selection (FS) was commonly used to find one of the most indicates. the status of characteristics with the least cardinality. For COVID-19 to find accuracy result in this research KNN and SVM algorithm used by using modified data set from Kaggle. Results showed 79.9% precision of education level wise prediction using KNN, 73.7% precision of devices wise prediction using KNN and 88.5% precision of educational level wise predication using SVM, 73.8% precision of device wise prediction using SVM which is showing that the proposed model is significant.Translated Description (French)
The advent of the COVID-19 outbreak has caused widespread public-health concerns. As a result of these emergency conditions, several governments have opted to implement lockdowns to reduce social interaction and minimize infection. Le COVID-19 a des organisations d'enseignement supérieur (HEO) significativement impactées. Many unorthodox educational methods are proposed to ensure the continuation of the learning system in light of the effects of this pandemic and the necessity for alternative remedies. Online Education (OE), also based on learning together in a synchronous or asynchronous environment by employing various equipment, including mobile devices, Computers, and so forth, for Internet access, was among the options. Tous les systèmes d'éducation sont principalement liés à l'accomplissement académique des étudiants pour améliorer la norme globale de l'enseignement. In this regard, Educational Data Mining (EDM) seems to be an expeditiously growing field of research that employs the significance of Data Mining (DM) ideas to assist the education system in determining valuable information just on Student Satisfaction Learning (SSL) with both Online Learning procedure (OL) as during COVID-19. Various approaches have been explored using EDM to forecast students' behaviors to provide the optimum educational settings. As a result, Feature Selection (FS) was commonly used to find one of the most indicates. the status of characteristics with the least cardinality. For COVID-19 to find accuracy result in this research KNN and SVM algorithm used by using modified data set from Kaggle. Résultats analysés 79,9 % de précision de la prévision intelligente du niveau d'éducation à l'aide de KNN, 73,7 % de précision de la prévision intelligente des appareils à l'aide de KNN et 88,5 % de précision de la prévision intelligente du niveau d'éducation à l'aide de SVM, 73,8 % de précision de la prévision intelligente des appareils à l'aide de SVM qui montre que le modèle proposé est significatif.Translated Description (Spanish)
The advent of the COVID-19 outbreak has caused widespread public-health concerns. As a result of these emergency conditions, several governments have opted to implement lockdowns to reduce social interaction and minimize infection. COVID-19 ha tenido un impacto significativo en las Organizaciones de Educación Superior (HEOs). Many unorthodox educational methods are proposed to ensure the continuation of the learning system in light of the effects of this pandemic and the necessity for alternative remedies. Online Education (OE), also based on learning together in a synchronous or asynchronous environment by employing various equipment, including mobile devices, Computers, and so forth, for Internet access, was among the options. All education systems are primarily concerned with boosting students' academic achievement to improve the overall standard of teaching. In this regard, Educational Data Mining (EDM) seems to be an expeditiously growing field of research that employs the significance of Data Mining (DM) ideas to assist the education system in determining valuable information just on Student Satisfaction Learning (SSL) with both Online Learning procedure (OL) as during COVID-19. Various approaches have been explored using EDM to forecast students' behaviors to provide the optimum educational settings. As a result, Feature Selection (FS) was commonly used to find one of the most indicates. the status of characteristics with the least cardinality. For COVID-19 to find accuracy result in this research KNN and SVM algorithm used by using modified data set from Kaggle. Results showed 79.9% precision of education level wise prediction using KNN, 73.7% precision of devices wise prediction using KNN and 88.5% precision of educational level wise predication using SVM, 73.8% precision of device wise prediction using SVM which is showing that the proposed model is significant.Files
144.pdf
Files
(540.7 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:3bf60fb83fc2f7471dbcb7dfc45c4c6f
|
540.7 kB | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- نهج فعال لاستخراج البيانات لتقييم رضا الطلاب عن التعليم عبر الإنترنت أثناء جائحة كوفيد-19
- Translated title (English)
- AN EFFECTIVE DATA MINING APPROACH FOR ASSESSING STUDENT'S SATISFACTION IN ONLINE EDUCATION DURING COVID-19 PANDEMIC
- Translated title (French)
- AN EFFECTIVE DATA MINING APPROACH FOR ASSESSING STUDENT' S SATISFACTION IN ONLINE EDUCATION PENDANT LA PANDÉMIE DE COVID-19
- Translated title (Spanish)
- AN EFFECTIVE DATA MINING APPROACH FOR ASSESSING STUDENT'SATISFACTION IN ONLINE EDUCATION DURING COVID-19 PANDEMIC
Identifiers
- Other
- https://openalex.org/W4396522377
- DOI
- 10.36755/jac.v2i1.59
References
- https://openalex.org/W1602537754
- https://openalex.org/W2033902928
- https://openalex.org/W2593901358
- https://openalex.org/W2747577432
- https://openalex.org/W2808763997
- https://openalex.org/W2808991696
- https://openalex.org/W4205963049