Published October 20, 2023 | Version v1
Publication Open

Spin-polarized Majorana zero modes in proximitized superconducting penta-silicene nanoribbons

  • 1. Centro Brasileiro de Pesquisas Físicas
  • 2. AGH University of Krakow
  • 3. Jagiellonian University
  • 4. Universidad Tecnológica del Perú
  • 5. University of Iceland
  • 6. Russian Quantum Center
  • 7. Universidade Estadual Paulista (Unesp)
  • 8. French National Centre for Scientific Research
  • 9. Aix-Marseille University
  • 10. Universidade Federal Fluminense

Description

Abstract We theoretically propose penta-silicene nanoribbons (p-SiNRs) with induced p -wave superconductivity as a platform for the emergence of spin-polarized Majorana zero-modes (MZMs). The model explicitly considers the key ingredients of well-known Majorana hybrid nanowire setups: Rashba spin-orbit coupling, magnetic field perpendicular to the nanoribbon plane, and first nearest neighbor hopping with p -wave superconducting pairing. The energy spectrum of the system, as a function of chemical potential, reveals the existence of MZMs with a well-defined spin orientation localized at the opposite ends of both the top and bottom chains of the p-SiNR, associated with well-localized and nonoverlapping wave function profiles. Well-established experimental techniques enable the fabrication of highly ordered p-SiNRs, complemented by a thin lead film on top, responsible for inducing p -wave superconductivity through proximity effect. Moreover, the emergence of MZMs with explicit opposite spin orientations for some set of model parameters opens a new avenue for exploring quantum computing operations, which accounts for both MZMs and spin properties, as well as for new MZMs probe devices based on spin-polarized electronic transport mechanisms.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

نبذة مختصرة اقترحنا نظريًا شرائط النانو خماسية السيليسين (p - SiNRs) مع الموصلية الفائقة لموجة p المستحثة كمنصة لظهور أنماط الصفر ماجورانا المستقطبة المغزلية (MZMs). يأخذ النموذج في الاعتبار صراحة المكونات الرئيسية لإعدادات الأسلاك النانوية الهجينة المعروفة من ماجورانا: اقتران راشبا المداري المغزلي، والمجال المغناطيسي عموديًا على مستوى الشريط النانوي، وأول أقرب جار يقفز مع الاقتران فائق التوصيل بموجة p. يكشف طيف الطاقة للنظام، كدالة للجهد الكيميائي، عن وجود MZMs مع اتجاه دوران محدد جيدًا موضعيًا في الأطراف المقابلة لكل من السلاسل العلوية والسفلية لـ p - SiNR، المرتبطة بملفات تعريف وظيفة الموجة الموضعية جيدًا وغير المتداخلة. تمكن التقنيات التجريبية الراسخة من تصنيع p - SiNRs عالية الترتيب، تكملها طبقة رقيقة من الرصاص في الأعلى، مسؤولة عن إحداث الموصلية الفائقة للموجة p من خلال تأثير القرب. علاوة على ذلك، فإن ظهور MZMs مع اتجاهات دوران عكسية صريحة لمجموعة من معلمات النموذج يفتح طريقًا جديدًا لاستكشاف عمليات الحوسبة الكمومية، والتي تفسر كل من MZMs وخصائص الدوران، بالإضافة إلى أجهزة مسبار MZMs الجديدة القائمة على آليات النقل الإلكتروني المستقطبة بالدوران.

Translated Description (English)

Abstract We theoretically proposed penta-silicene nanoribbons (p-SiNRs) with induced p-wave superconductivity as a platform for the emergence of spin-polarized Majorana zero-modes (MZMs). The model explicitly considers the key ingredients of well-known Majorana hybrid nanowire setups: Rashba spin-orbit coupling, magnetic field perpendicular to the nanoribbon plane, and first nearest neighbor hopping with p-wave superconducting pairing. The energy spectrum of the system, as a function of chemical potential, reveals the existence of MZMs with a well-defined spin orientation localized at the opposite ends of both the top and bottom chains of the p-SiNR, associated with well-localized and nonoverlapping wave function profiles. Well-established experimental techniques enable the fabrication of highly ordered p-SiNRs, complemented by a thin lead film on top, responsible for inducing p-wave superconductivity through proximity effect. Moreover, the emergence of MZMs with explicit opposite spin orientations for some set of model parameters opens a new avenue for exploring quantum computing operations, which accounts for both MZMs and spin properties, as well as for new MZMs probe devices based on spin-polarized electronic transport mechanisms.

Translated Description (French)

Abstract We theoretically proposed penta-silicene nanoribbons (p-SiNRs) with induced p -wave superconductivity as a platform for the emergence of spin-polarized Majorana zero-modes (MZMs). The model explicitly considerers the key ingredients of well-known Majorana hybrid nanowire setups : Rashba spin-orbit coupling, magnetic field perpendicular to the nanoribbon plane, and first nearest neighbor hopping with p -wave superconducting pairing. The energy spectrum of the system, as a function of chemical potential, reveals the existence of MZMs with a well-defined spin orientation localized at the opposite ends of both the top and bottom chains of the p-SiNR, associated with well-localized and nonoverlapping wave function profiles. Well-established experimental techniques enable the fabrication of highly ordered p-SiNRs, complemented by a thin lead film on top, responsible for inducing p -wave superconductivity through proximity effect. Moreover, the emergence of MZMs with explicit opposite spin orientations for some set of model parameters opens a new avenue for exploring quantum computing operations, which accounts for both MZMs and spin properties, as well as for new MZMs probe devices based on spin-polarized electronic transport mechanisms.

Translated Description (Spanish)

Resumen We theoretically propuso penta-silicene nanoribbons (p-SiNRs) with induced p -wave superconductivity as a platform for the emergence of spin-polarized Majorana zero-modes (MZMs). The model explicitly considers the key Ingredients of well-known Majorana hybrid nanowire setups: Rashba spin-orbit coupling, magnetic field perpendicular to the nanoribbon plane, and first nearest neighbor hopping with p -wave superconducting pairing. The energy spectrum of the system, as a function of chemical potential, reveals the existence of MZMs with a well-defined spin orientation localized at the opposite ends of both the top and bottom chains of the p-SiNR, associated with well-localized and nonoverlapping wave function profiles. Well-established experimental techniques enable the fabrication of highly ordered p-SiNRs, complemented by a thin lead film on top, responsible for inducing p -wave superconductivity through proximity effect. Moreover, the emergence of MZMs with explicit opposite spin orientations for some set of model parameters opens a new avenue for exploring quantum computing operations, which accounts for both MZMs and spin properties, as well as for new MZMs probe devices based on spin-polarized electronic transport mechanisms.

Files

s41598-023-44739-7.pdf.pdf

Files (3.1 MB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:cf6c12fee111e374567adc87b5cc29ba
3.1 MB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
أوضاع ماجورانا الصفرية المستقطبة بالدوران في شرائط النانو خماسية السيليسين فائقة التوصيل القريبة
Translated title (English)
Spin-polarized Majorana zero modes in proximitized superconducting penta-silicene nanoribbons
Translated title (French)
Spin-polarized Majorana zero modes in proximitized supraconducting penta-silicene nanoribbons
Translated title (Spanish)
Spin-polarized Majorana zero modes in proximitized superconducting penta-silicene nanoribbons

Identifiers

Other
https://openalex.org/W4387810551
DOI
10.1038/s41598-023-44739-7

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Brazil

References

  • https://openalex.org/W1973972788
  • https://openalex.org/W1984535384
  • https://openalex.org/W1986895442
  • https://openalex.org/W1991260972
  • https://openalex.org/W1991616072
  • https://openalex.org/W1993366366
  • https://openalex.org/W2009541596
  • https://openalex.org/W2012048872
  • https://openalex.org/W2037013334
  • https://openalex.org/W2038094415
  • https://openalex.org/W2042107922
  • https://openalex.org/W2048248004
  • https://openalex.org/W2049181870
  • https://openalex.org/W2057423897
  • https://openalex.org/W2067650803
  • https://openalex.org/W2069976231
  • https://openalex.org/W2069989016
  • https://openalex.org/W2076277430
  • https://openalex.org/W2082511946
  • https://openalex.org/W2085150844
  • https://openalex.org/W2089843538
  • https://openalex.org/W2116325781
  • https://openalex.org/W2127630995
  • https://openalex.org/W2167932780
  • https://openalex.org/W2301490063
  • https://openalex.org/W2342692111
  • https://openalex.org/W2525718493
  • https://openalex.org/W2534820175
  • https://openalex.org/W2586296874
  • https://openalex.org/W2587398163
  • https://openalex.org/W2603358180
  • https://openalex.org/W2762484852
  • https://openalex.org/W2795255339
  • https://openalex.org/W2800582642
  • https://openalex.org/W2888234020
  • https://openalex.org/W2901022903
  • https://openalex.org/W2903137169
  • https://openalex.org/W2950109169
  • https://openalex.org/W2950326481
  • https://openalex.org/W2952132810
  • https://openalex.org/W2952401062
  • https://openalex.org/W2969899985
  • https://openalex.org/W2990462995
  • https://openalex.org/W2997611660
  • https://openalex.org/W3010797476
  • https://openalex.org/W3013646092
  • https://openalex.org/W3014431460
  • https://openalex.org/W3037041513
  • https://openalex.org/W3099489795
  • https://openalex.org/W3099954875
  • https://openalex.org/W3100942379
  • https://openalex.org/W3102492903
  • https://openalex.org/W3103450160
  • https://openalex.org/W3104312126
  • https://openalex.org/W3104381485
  • https://openalex.org/W3106120793
  • https://openalex.org/W3107109089
  • https://openalex.org/W3125378746
  • https://openalex.org/W3126978261
  • https://openalex.org/W3153588271
  • https://openalex.org/W3175378257
  • https://openalex.org/W3179830933
  • https://openalex.org/W3185508622
  • https://openalex.org/W3194146244
  • https://openalex.org/W3197038760
  • https://openalex.org/W3203917169
  • https://openalex.org/W4295815427
  • https://openalex.org/W4308107460
  • https://openalex.org/W4309562984
  • https://openalex.org/W4318981441
  • https://openalex.org/W4319311624