Published March 20, 2020 | Version v1
Publication Open

DEPP - Differential Evolution Parallel Program

  • 1. Universidade Tecnológica Federal do Paraná
  • 2. Universidade Federal do Paraná

Description

Optimization is a mathematical problem often found in science and engineering.Currently, however, there is no general method to face this problem.Solutions are generally addressed by two approaches, both iterative: (a) quasi-Newton methods (Griva, Nash, & Sofer, 2009) and (b) heuristic methods (Coley, 1999;Feoktistov, 2006).Each one has advantages depending on the problem to be optimized.Quasi-Newton methods, in general, converge faster then heuristic methods provided the function to be optimized (the objective function) is smooth.Heuristic methods, on the other hand, are more appropriate to deal with noisy objective functions, to handle failures in the calculation of the objective function and are less susceptible to be retained in local optimum than quasi-Newton methods.Among the heuristic methods, Differential Evolution (DE) (Price, Storn, & Lampinen, 2005; Storn & Price, 1997) had emerged as a simple and efficient method for finding the global maximum.This method is based on the principles of biological evolution.To combine the robustness of heuristic methods with the high convergence speed of quasi-Newton methods, Loris Vincenzi and Marco Savoia (Vincenzi & Savoia, 2015) proposed coupling Differential Evolution heuristic with Response Surfaces (Khuri & Cornell, 1996;Myers, Montgomery, & Anderson-Cook, 2009).Fitting Response Surfaces during optimization and finding their optima mimics quasi-Newton methods.The authors showed that this approach reduced significantly the effort to solve some problems within a given tolerance (in general, more than 50% compared to the original heuristic method).

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

التحسين هو مشكلة رياضية غالبًا ما توجد في العلوم والهندسة. ومع ذلك، لا توجد حاليًا طريقة عامة لمواجهة هذه المشكلة. يتم معالجة الحلول عمومًا من خلال نهجين، كلاهما تكراري: (أ) طرق شبه نيوتن (Griva، Nash، & Sofer، 2009) و (ب) طرق الاستدلال (Coley، 1999 ؛Feoktistov، 2006). كل واحد له مزايا اعتمادًا على المشكلة التي يجب تحسينها. تتقارب طرق Quasi - Newton، بشكل عام، بشكل أسرع ثم طرق الاستدلال بشرط أن تكون الوظيفة المراد تحسينها (الوظيفة الموضوعية) سلسة. من ناحية أخرى، هي أكثر ملاءمة للتعامل مع وظائف موضوعية صاخبة، للتعامل مع الإخفاقات في حساب وظيفة الهدف وأقل عرضة للاحتفاظ بها في الطرق المثلى المحلية من الطرق شبه نيوتن. من بين الأساليب الإرشادية، ظهر التطور التفاضلي (برايس، ستورن، لامبينين، 2005 ؛ ستورن آند برايس، 1997) كطريقة بسيطة وفعالة لإيجاد الحد الأقصى العالمي. تعتمد هذه الطريقة على مبادئ التطور البيولوجي. للجمع بين متانة الأساليب الإرشادية وسرعة التقارب العالية لطرق شبه نيوتن، اقترح لوريس فينتشنزي وماركو سافويا (فينشنزي وسافويا، 2015) اقتران تفاضلي التطور الاستكشافي مع أسطح الاستجابة (خوري وكورنيل، 1996 ؛مايرز ومونتغمري وأندرسون كوك، 2009). تركيب أسطح الاستجابة أثناء التحسين وإيجاد الأمثل لها يحاكي أساليب شبه نيوتن. أظهر المؤلفون أن هذا النهج قلل بشكل كبير من الجهد المبذول لحل بعض المشاكل ضمن تفاوت معين (بشكل عام، أكثر من 50 ٪ مقارنة بالطريقة الاستكشافية الأصلية).

Translated Description (English)

Optimization is a mathematical problem often found in science and engineering.Currently, however, there is no general method to face this problem.Solutions are generally addressed by two approaches, both iterative: (a) quasi-Newton methods (Griva, Nash, & Sofer, 2009) and (b) heuristic methods (Coley, 1999;Feoktistov, 2006).Each one has advantages depending on the problem to be optimized.Quasi-Newton methods, in general, converge faster then heuristic methods provided the function to be optimized (the objective function) is smooth.Heuristic methods, on the other hand, are more appropriate to deal with noisy objective functions, to handle failures in the calculation of the objective function and are less susceptible to be retained in local optimum than quasi-Newton methods.Among the heuristic methods, Differential Evolution (DE) (Price, Storn, & Lampinen, 2005; Storn & Price, 1997) had emerged as a simple and efficient method for finding the global maximum.This method is based on the principles of biological evolution.To combine the robustness of heuristic methods with the high convergence speed of quasi-Newton methods, Loris Vincenzi and Marco Savoia (Vincenzi & Savoia, 2015) proposed coupling Differential Evolution heuristic with Response Surfaces (Khuri & Cornell, 1996;Myers, Montgomery, & Anderson-Cook, 2009) .Fitting Response Surfaces during optimization and finding their optima mimics quasi-Newton methods.The authors showed that this approach significantly reduced the effort to solve some problems within a given tolerance (in general, more than 50% compared to the original heuristic method).

Translated Description (French)

Optimization is a mathematical problem often found in science and engineering.Currently, however, there is no general method to face this problem.Solutions are generally addressed by two approaches, both itérative : (a) quasi-Newton methods (Griva, Nash, & Sofer, 2009) and (b) heuristic methods (Coley, 1999 ;Feoktistov, 2006).Each one has advantages depending on the problem to be optimized.Quasi-Newton methods, en général, converge faster then heuristic methods provided the function to beized (the objective function) is smooth.Heuristic methods, on the other hand, are more appropriate to deal with noisy objective functions, to handle failures in the calculation of the objective function and are less susceptible to be retained in local optimum than quasi-Newton methods.Among the heuristic methods, Differential Evolution (DE) (Price, Storn, & Lampinen, 2005 ; Storn & Price, 1997) had emerged as a simple and efficient method for finding the global maximum.This method is based on the principles of biological evolution.To combine the robustness of heuristic methods with the high convergence speed of quasi-Newton methods, Loris Vincenzi and Marco Savoia (Vincenzi & Savoia, 2015) Evolution heuristic with Response Surfaces (Khuri & Cornell, 1996 ;Myers, Montgomery, & Anderson-Cook, 2009) .Fitting Response Surfaces during optimization and finding their optima mimics quasi-Newton methods.The authors showed that this approach reduced significantly the effort to solve some problems within a given tolerance (en général, more than 50% compared to the original heuristic method).

Translated Description (Spanish)

Optimization is a mathematical problem often found in science and engineering.Currently, however, there is no general method to face this problem.Solutions are generally addressed by two approaches, both iterative: (a) quasi-Newton methods (Griva, Nash, & Sofer, 2009) and (b) heuristic methods (Coley, 1999;Feoktistov, 2006).Each one has advantages depending on the problem to be optimized.Quasi-Newton methods, in general, converge faster then heuristic methods provided the function to be optimized (the objective function) is smooth.Heuristic methods, on the other hand, are more appropriate to deal with noisy objective functions, to handle failures in the calculation of the objective function and are less susceptible to be retained in local optimum than quasi-Newton methods.Among the heuristic methods, Differential Evolution (DE) (Price, Storn, & Lampinen, 2005; Storn & Price, 1997) had emerged as a simple and efficient method for finding the global maximum.This method is based on the principles of biological evolution.To combine the robustness of heuristic methods with the high convergence speed of quasi-Newton methods, Loris Vincenzi and Marco Savoia (Vincenzi & Savoia, 2015) proposed coupling Differential Evolution heuristic with Response Surfaces (Khuri & Cornell, 1996;Myers, Montgomery, & Anderson-Cook, 2009) .Fitting Response Surfaces during optimization and finding their optima mimics quasi-Newton methods.The authors showed that this approach reduced significantly the effort to solve some problems within a given tolerance (en general, more than 50% compared to the original heuristic method).

Files

joss.01701.pdf.pdf

Files (834.7 kB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:522d73e156466a8410b6f3d8f82b2090
834.7 kB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
DEPP - برنامج التطور التفاضلي الموازي
Translated title (English)
DEPP - Differential Evolution Parallel Program
Translated title (French)
DEPP - Differential Evolution Parallel Program
Translated title (Spanish)
DEPP - Differential Evolution Parallel Program

Identifiers

Other
https://openalex.org/W3011436484
DOI
10.21105/joss.01701

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Brazil

References

  • https://openalex.org/W1595159159
  • https://openalex.org/W1739143152
  • https://openalex.org/W2155529731