A data model for enhanced data comparability across multiple organizations
Description
Abstract Organizations may be related in terms of similar operational procedures, management, and supervisory agencies coordinating their operations. Supervisory agencies may be governmental or non-governmental but, in all cases, they perform oversight functions over the activities of the organizations under their control. Multiple organizations that are related in terms of oversight functions by their supervisory agencies, may differ significantly in terms of their geographical locations, aims, and objectives. To harmonize these differences such that comparative analysis will be meaningful, data about the operations of multiple organizations under one control or management can be cultivated, using a uniform format. In this format, data is easily harvested and the ease with which it is used for cross-population analysis, referred to as data comparability is enhanced. The current practice, whereby organizations under one control maintain their data in independent databases, specific to an enterprise application, greatly reduces data comparability and makes cross-population analysis a herculean task. In this paper, the collocation data model is formulated as consisting of big data technologies beyond data mining techniques and used to reduce the heterogeneity inherent in databases maintained independently across multiple organizations. The collocation data model is thus presented as capable of enhancing data comparability across multiple organizations. The model was used to cultivate the assessment scores of students in some schools for some period and used to rank the schools. The model permits data comparability across several geographical scales among which are: national, regional and global scales, where harvested data form the basis for generating analytics for insights, hindsight, and foresight about organizational problems and strategies.
Translated Descriptions
Translated Description (Arabic)
قد تكون المنظمات المجردة مرتبطة من حيث الإجراءات التشغيلية المماثلة، والإدارة، والوكالات الإشرافية التي تنسق عملياتها. قد تكون الوكالات الإشرافية حكومية أو غير حكومية، ولكنها في جميع الحالات تؤدي وظائف إشرافية على أنشطة المنظمات الخاضعة لسيطرتها. قد تختلف المنظمات المتعددة ذات الصلة من حيث وظائف الرقابة من قبل وكالاتها الإشرافية اختلافًا كبيرًا من حيث مواقعها الجغرافية وأهدافها وغاياتها. لمواءمة هذه الاختلافات بحيث يكون التحليل المقارن ذا مغزى، يمكن جمع البيانات حول عمليات منظمات متعددة تحت سيطرة أو إدارة واحدة، باستخدام تنسيق موحد. في هذا التنسيق، يتم حصاد البيانات بسهولة ويتم تعزيز السهولة التي يتم استخدامها بها للتحليل بين السكان، والمشار إليها بقابلية مقارنة البيانات. الممارسة الحالية، حيث تحتفظ المنظمات الخاضعة لسيطرة واحدة ببياناتها في قواعد بيانات مستقلة، خاصة بتطبيق المؤسسة، تقلل إلى حد كبير من قابلية مقارنة البيانات وتجعل التحليل عبر السكان مهمة شاقة. في هذه الورقة، تمت صياغة نموذج بيانات التجميع على أنه يتكون من تقنيات البيانات الضخمة التي تتجاوز تقنيات استخراج البيانات ويستخدم لتقليل عدم التجانس المتأصل في قواعد البيانات المحفوظة بشكل مستقل عبر منظمات متعددة. وبالتالي يتم تقديم نموذج بيانات التجميع على أنه قادر على تعزيز قابلية مقارنة البيانات عبر منظمات متعددة. تم استخدام النموذج لزراعة درجات تقييم الطلاب في بعض المدارس لفترة واستخدم لترتيب المدارس. يسمح النموذج بمقارنة البيانات عبر العديد من المقاييس الجغرافية من بينها: المقاييس الوطنية والإقليمية والعالمية، حيث تشكل البيانات المحصودة الأساس لتوليد تحليلات للرؤى والإبصار المتأخر والاستبصار حول المشاكل والاستراتيجيات التنظيمية.Translated Description (English)
Abstract Organizations may be related in terms of similar operational procedures, management, and supervisory agencies coordinating their operations. Supervisory agencies may be governmental or non-governmental but, in all cases, they perform oversight functions over the activities of the organizations under their control. Multiple organizations that are related in terms of oversight functions by their supervisory agencies, may differ significantly in terms of their geographical locations, aims, and objectives. To harmonize these differences such that comparative analysis will be meaningful, data about the operations of multiple organizations under one control or management can be cultivated, using a uniform format. In this format, data is easily harvested and the ease with which it is used for cross-population analysis, referred to as data comparability is enhanced. The current practice, whereby organizations under one control maintain their data in independent databases, specific to an enterprise application, greatly reduces data comparability and makes cross-population analysis a herculean task. In this paper, the collocation data model is formulated as consisting of big data technologies beyond data mining techniques and used to reduce the heterogeneity inherent in databases maintained independently across multiple organizations. The collocation data model is thus presented as capable of enhancing data comparability across multiple organizations. The model was used to cultivate the assessment scores of students in some schools for some period and used to rank the schools. The model allows data comparability across several geographical scales among which are: national, regional and global scales, where harvested data form the basis for generating analytics for insights, hindsight, and foresight about organizational problems and strategies.Translated Description (French)
Abstract Organizations may be related in terms of similar operational procedures, management, and supervisory agencies coordininating their operations. Supervisory agencies may be governmental or non-governmental but, in all cases, they perform oversight functions over the activities of the organizations under their control. Multiple organizations that are related in terms of oversight functions by their supervisory agencies, may differ significantly in terms of their geographical localisations, aims, and objectives. To harmonize these differences such that comparative analysis will be meaningful, data about the operations of multiple organizations under one control or management can be cultivated, using a uniform format. In this format, data is easily harvested and the ease with which it is used for cross-population analysis, referred to as data comparability is enhanced. The current practice, whereby organizations under one control maintain their data in independent databases, specific to an enterprise application, greatly reduces data comparability and makes cross-population analysis a herculean task. Dans ce document, le modèle de localisation des données est formulé en tant que consisting of big data technologies beyond data mining techniques and used to reduce the heterogeneity inhérent in databases maintained independently across multiple organizations. The collocation data model is thus presented as capable of enhancing data comparability across multiple organizations. The model was used to cultivate the assessment scores of students in some schools for some period and used to rank the schools. The model permits data comparability across several geographical scales among which are : national, regional and global scales, where harvested data form the basis for generating analytics for insights, hindsight, and foresight about organizational problems and strategies.Translated Description (Spanish)
Abstract Organizations may be related in terms of similar operational procedures, management, and supervisory agencies coordinating their operations. Supervisory agencies may be governmental or non-governmental but, in all cases, they perform oversight functions over the activities of the organizations under their control. Multiple organizations that are related in terms of oversight functions by their supervisory agencies, may differantly in terms of their geographical locations, AIMS, and objectives. To harmonize these differences such that comparative analysis will be meaningful, data about the operations of multiple organizations under one control or management can be cultivated, using a uniform format. In this format, data is easily harvested and the ease with which it is used for cross-population analysis, referred to as data comparability is enhanced. The current practice, whereby organizations under one control maintain their data in independent databases, specific to an enterprise application, greatly reduces data comparability and makes cross-population analysis a herculean task. En este documento, el modelo de colocación de datos está formulado como consistorio de grandes tecnologías de datos más allá de las técnicas de minería de datos y utilizado para reducir la heterogeneidad inherente en bases de datos maintained independently across multiple organizations. The colocation data model is thus presented as capable of enhancing data comparability across multiple organizations. The model was used to cultivate the assessment scores of students in some schools for some period and used to rank the schools. The model permits data comparability across several geographical scales among which are: national, regional and global scales, where harvested data form the basis for generating analytics for insights, hindsight, and foresight about organizational problems and strategies.Files
s40537-020-00370-1.pdf
Files
(1.8 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:868f449ee7a7b10a5c54f10907576cab
|
1.8 MB | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- نموذج بيانات لتعزيز قابلية مقارنة البيانات عبر مؤسسات متعددة
- Translated title (English)
- A data model for enhanced data comparability across multiple organizations
- Translated title (French)
- A data model for enhanced data comparability across multiple organizations
- Translated title (Spanish)
- A data model for enhanced data comparability across multiple organizations
Identifiers
- Other
- https://openalex.org/W3105996400
- DOI
- 10.1186/s40537-020-00370-1
References
- https://openalex.org/W1506003981
- https://openalex.org/W1861905770
- https://openalex.org/W2016758618
- https://openalex.org/W2034865718
- https://openalex.org/W2072764742
- https://openalex.org/W2120751691
- https://openalex.org/W2140190241
- https://openalex.org/W2157365260
- https://openalex.org/W2162520370
- https://openalex.org/W2172250756
- https://openalex.org/W2247125699
- https://openalex.org/W2319809466
- https://openalex.org/W2411343778
- https://openalex.org/W2462583090
- https://openalex.org/W2582761114
- https://openalex.org/W2593197694
- https://openalex.org/W2769997441
- https://openalex.org/W2897722020
- https://openalex.org/W2915055379
- https://openalex.org/W2945539219
- https://openalex.org/W2969473514
- https://openalex.org/W2999134449
- https://openalex.org/W4229658977
- https://openalex.org/W4234280655