Published January 1, 2013 | Version v1
Publication Open

Existence Results for Fractional Difference Equations with Three-Point Fractional Sum Boundary Conditions

  • 1. King Mongkut's University of Technology North Bangkok
  • 2. University of Ioannina

Description

We consider a discrete fractional boundary value problem of the formΔαu(t)=f(t+α-1,u(t+α-1)), t∈[0,T]ℕ0:={0,1,…,T}, u(α-2)=0, u(α+T)=Δ-βu(η+β),where1<α≤2,β>0,η∈[α-2,α+T-1]ℕα-2:={α-2,α-1,…,α+T-1}, andf:[α-1,α,…,α+T-1]ℕα-1×ℝ→ℝis a continuous function. The existence of at least one solution is proved by using Krasnoselskii's fixed point theorem and Leray-Schauder's nonlinear alternative. Some illustrative examples are also presented.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

نحن نعتبر مسألة القيمة الحدية الكسرية المنفصلة للشكلΔαu (t) = f (t + α - 1, u (t + α-1)), t?????????????????????????????→????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? تم إثبات وجود حل واحد على الأقل باستخدام نظرية النقطة الثابتة لكراسنوسيلسكي وبديل ليراي شودر غير الخطي. كما يتم تقديم بعض الأمثلة التوضيحية.

Translated Description (French)

Nous considérons un problème de valeur limite fractionnaire discrète de la formeΔαu(t)=f(t+α-1,u(t+α-1)), t∈[0,T] 0 :={0,1,…,T}, u(α-2)=0, u(α+T)=Δ-βu(η+β),où1<α≤2,β>0,η∈[α-2,α+T-1] α-2 :={α-2,α-1,…,α+T-1}, etf :[α-1,α, …,α+T-1] α-1→× ‹ est une fonction continue. L'existence d'au moins une solution est prouvée en utilisant le théorème du point fixe de Krasnoselskii et l'alternative non linéaire de Leray-Schauder. Quelques exemples illustratifs sont également présentés.

Translated Description (Spanish)

Consideramos un problema de valor de límite fraccionario discreto de la formaΔαu(t)=f(t+α-1,u(t+α-1)), t∈[0,T] "0:={0,1,…, T}, u(α-2)=0, u(α+T)=Δ-βu(η + β),donde1<α≤2, β>0, η∈[α-2, α +T - 1]" α-2:={α- 2,α -1, …, α +T - 1}, yf:[α -1, α, …, α→ +T -1] es una función continua. La existencia de al menos una solución se demuestra utilizando el teorema del punto fijo de Krasnoselskii y la alternativa no lineal de Leray-Schauder. También se presentan algunos ejemplos ilustrativos.

Files

104276.pdf.pdf

Files (15.8 kB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:3ed0f555a43e406e30783a104adaa615
15.8 kB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
نتائج وجود معادلات الفرق الكسري مع شروط حدود المجموع الكسري ثلاثي النقاط
Translated title (French)
Résultats d'existence pour les équations de différence fractionnaire avec des conditions de limite de somme fractionnaire à trois points
Translated title (Spanish)
Resultados de existencia para ecuaciones de diferencia fraccionaria con condiciones de límite de suma fraccionaria de tres puntos

Identifiers

Other
https://openalex.org/W2067794579
DOI
10.1155/2013/104276

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Thailand

References

  • https://openalex.org/W1999997760
  • https://openalex.org/W2003195786
  • https://openalex.org/W2005863006
  • https://openalex.org/W2009847062
  • https://openalex.org/W2040554371
  • https://openalex.org/W2051020578
  • https://openalex.org/W2061051993
  • https://openalex.org/W2062337554
  • https://openalex.org/W2072612239
  • https://openalex.org/W2077736465
  • https://openalex.org/W2088303893
  • https://openalex.org/W2093196005
  • https://openalex.org/W2102933572
  • https://openalex.org/W2112741308
  • https://openalex.org/W2154011605
  • https://openalex.org/W4206290559
  • https://openalex.org/W4240465921
  • https://openalex.org/W4247953052