Published March 29, 2012 | Version v1
Publication Open

On $\Psi_{*}$-operator in ideal $m$-spaces

  • 1. National College

Description

An ideal on a set $X$ is a nonempty collection of subsets of $X$ with heredity property which is also closed finite unions. The concept of ideal $m$-spaces was introduced by Al-Omari and Noiri ~\cite{AN}. In this paper, we introduce and study an operator $\Psi_{*}:\PP(X)\rightarrow \M$ defined as follows for every $A\in X$, $\Psi_{*}(A)=\{x\in X:$ there exists a $U\in \M(x)$ such that $U-A \in \I \}$, and observes that $\Psi_{*}(A)=X-(X-A)_{*}$

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

المثالي على مجموعة $X$ هو مجموعة غير فارغة من المجموعات الفرعية من $X$ مع خاصية الميراث وهي أيضًا اتحادات محدودة مغلقة. تم تقديم مفهوم المساحات المثالية $m$ من قبل العمري ونويري ~\ cite{AN}. في هذه الورقة، نقدم وندرس المشغل $\Psi _{*}:\ PP(X)\ rightarrow \M$ المحدد على النحو التالي لكل $A\in X$، $\Psi _{*}( A )=\{ x\in X :$ يوجد $U\in \M(x )$ بحيث $ U - A\in\ I \}$، ولاحظ أن $\Psi _{*}( A )=X-( X - A )_{*}$

Translated Description (English)

An ideal on a set $X$ is a nonempty collection of subsets of $X$ with inheritance property which is also closed finite unions. The concept of ideal $m$-spaces was introduced by Al-Omari and Noiri ~\cite{AN}. In this paper, we introduce and study an operator $\Psi_{*}:\PP(X)\rightarrow \M$ defined as follows for every $A\in X$, $\Psi_{*}(A)=\{x\in X:$ there exists a $U\in \M(x)$ such that $U-A \in \I \}$, and observe that $\Psi_{*}(A)=X-(X-A)_{*}$

Translated Description (French)

An ideal on a set $X$ is a nonempty collection of subsets of $X$ with heredity property which is also closed finite unions. The concept of ideal $m$-spaces was introduced by Al-Omari and Noiri ~\cite{AN}. Dans ce document, nous présentons et étudions un opérateur $ \Psi_{*} :\PP(X)\rightarrow \M$ defined as follows for every $A\in X$ , $ \Psi_{*}(A)=\{x\in X :$ there exists a $U\in \M(x)$ such that $ U-A\in \I \}$ , and observes that $ \Psi_{*}(A)=X-(X-A)_{*}$

Translated Description (Spanish)

An ideal on a set $X$ is a nonempty collection of subsets of $X$ with heredity property which is also closed finite unions. The concept of ideal $m$-spaces was introduced by Al-Omari and Noiri ~\cite{AN}. En este documento, introducimos and study an operator $\Psi_{*}:\PP(X)\rightarrow \M$ defined as follows for every $A\in X$, $\Psi_{*}(A)=\{x\in X:$ there exists a $U\in \M(x)$ such that $ U-A\in \I \}$, and observes that $\Psi_{*}(A)=X-(X-A)_{*}$

Files

6800.pdf

Files (256 Bytes)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:0c8d6c8245575736aa9a75e98459eb25
256 Bytes
Preview Download

Additional details

Additional titles

Translated title (Arabic)
على $\Psi _{*}$- المشغل في مساحات $m$مثالية
Translated title (English)
On $\Psi_{*}$-operator in ideal $m$-spaces
Translated title (French)
On $ \Psi_{*}$-operator in ideal $m$-spaces
Translated title (Spanish)
On $\Psi_{*}$-operator in ideal $m$-spaces

Identifiers

Other
https://openalex.org/W2163071573
DOI
10.5269/bspm.v30i1.12787

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Mexico