Published February 13, 2024
| Version v1
Publication
Open
A class of finite-by-cocommutative Hopf algebras
- 1. University of Almería
- 2. Universidad Nacional de Córdoba
- 3. Consejo Nacional de Investigaciones Científicas y Técnicas
Description
We present a rich source of Hopf algebras starting from a cofinite central extension of a Noetherian Hopf algebra and a subgroup of the algebraic group of characters of the central Hopf subalgebra. The construction is transparent from a Tannakian perspective. We determine when the new Hopf algebras are co-Frobenius, or cosemisimple, or Noetherian, or regular, or have finite Gelfand-Kirillov dimension.
Translated Descriptions
⚠️
This is an automatic machine translation with an accuracy of 90-95%
Translated Description (Arabic)
نقدم مصدرًا غنيًا لجبر Hopf بدءًا من امتداد مركزي cofinite لجبر Noetherian Hopf ومجموعة فرعية من المجموعة الجبرية من أحرف الجبر الفرعي Hopf المركزي. البناء شفاف من منظور تاناكي. نحدد متى تكون جبر هوبف الجديد مشتركًا مع فروبينيوس، أو مشتركًا، أو نويثيريان، أو منتظمًا، أو له بعد Gelfand - Kirillov محدود.Translated Description (French)
Nous présentons une riche source d'algèbres de Hopf à partir d'une extension centrale cofinie d'une algèbre de Hopf noethérienne et d'un sous-groupe du groupe algébrique de caractères de la sous-algèbre de Hopf centrale. La construction est transparente d'un point de vue tannakien. Nous déterminons quand les nouvelles algèbres de Hopf sont co-Frobenius, ou cosemisimple, ou Noetherian, ou régulières, ou ont une dimension finie de Gelfand-Kirillov.Translated Description (Spanish)
Presentamos una rica fuente de álgebras Hopf a partir de una extensión central cofinita de un álgebra Hopf noetheriana y un subgrupo del grupo algebraico de caracteres de la subálgebra Hopf central. La construcción es transparente desde una perspectiva tannakiana. Determinamos cuándo las nuevas álgebras de Hopf son co-Frobenius, o cosemisimple, o noetheriana, o regular, o tienen una dimensión finita de Gelfand-Kirillov.Files
art.5.pdf.pdf
Files
(833.2 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:b2d8d46a46e273dca4bbb8f7d7f32dd4
|
833.2 kB | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- فئة من جبر هوبف المحدود بالتبديل
- Translated title (French)
- Une classe d'algèbres de Hopf finies par commutatives
- Translated title (Spanish)
- Una clase de álgebras Hopf finitas por cocommutativas
Identifiers
- Other
- https://openalex.org/W4391786806
- DOI
- 10.5802/art.5
References
- https://openalex.org/W1530431073
- https://openalex.org/W1596655614
- https://openalex.org/W1968832500
- https://openalex.org/W1974623814
- https://openalex.org/W1974881494
- https://openalex.org/W1984305731
- https://openalex.org/W1988404160
- https://openalex.org/W1991332735
- https://openalex.org/W1995503643
- https://openalex.org/W1997444728
- https://openalex.org/W2003916108
- https://openalex.org/W2005154490
- https://openalex.org/W2014141013
- https://openalex.org/W2019645162
- https://openalex.org/W2032868343
- https://openalex.org/W2035634421
- https://openalex.org/W2040034546
- https://openalex.org/W2040246084
- https://openalex.org/W2043227071
- https://openalex.org/W2043651222
- https://openalex.org/W2046010592
- https://openalex.org/W2048740391
- https://openalex.org/W2048894573
- https://openalex.org/W2057890460
- https://openalex.org/W2066772713
- https://openalex.org/W2071553747
- https://openalex.org/W2082233842
- https://openalex.org/W2085366423
- https://openalex.org/W2089795569
- https://openalex.org/W2090999622
- https://openalex.org/W2094903325
- https://openalex.org/W2102232406
- https://openalex.org/W2123596803
- https://openalex.org/W2148959887
- https://openalex.org/W2150975341
- https://openalex.org/W2313272764
- https://openalex.org/W2328085946
- https://openalex.org/W2477723501
- https://openalex.org/W2765153680
- https://openalex.org/W2963218836
- https://openalex.org/W2963856956
- https://openalex.org/W2964090662
- https://openalex.org/W2964173755
- https://openalex.org/W3081495392
- https://openalex.org/W3101309201
- https://openalex.org/W3120314124
- https://openalex.org/W3166804514
- https://openalex.org/W3188044541
- https://openalex.org/W4238114872
- https://openalex.org/W4248577164
- https://openalex.org/W4321321992