Published December 13, 2023 | Version v1
Publication Open

CO-SEISMIC LANDSLIDE BASED VALIDATION OF SUSCEPTIBILITY MAPPING AFTER KAHRAMANMARAS EARTHQUAKES (FEB 6, 2023) IN AMANOS MOUNTAINS

Description

Abstract. The quality of landslide susceptibility maps is often assessed using a part of learning data that represents geographical and land use characteristics over a quasi-fixed time. However, when validated with multi-temporal landslide inventories, more realistic insights on the susceptibility maps can be obtained. In addition, extreme events may trigger landslides in regions which are not considered as landslide-prone. The February 6, 2023, Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6), also known as the disaster of the century, triggered numerous landslides. Amanos Mountains located in southern Türkiye were also within the earthquake-affected area and had a very small amount of inventory recorded in official databases. The aim of this study was to evaluate the performance of the random forest method for producing landslide susceptibility maps. The official inventory of General Directorate of Mineral Research and Exploration (MTA) was used for map production. The resulting susceptibility map was assessed using the co-seismic landslide inventory produced in the study. The model's performance evaluated using a part of the learning data yielded high accuracy expressed with area under receiver operating characteristics curve (AUC), precision, and recall values and F1 score using (AUC = 97%, recall = 97%, precision = 96%, F1 = 98%). However, multi-temporal evaluation with co-seismic landslides showed that 80% of the landslide pixels with moderate, high, and very high susceptibility levels could be predicted with the model. The results suggest that special attention should be given to features underrepresented in the inventory, such as low altitudes and types of lithology.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

الملخص. غالبًا ما يتم تقييم جودة خرائط قابلية الانهيارات الأرضية باستخدام جزء من بيانات التعلم التي تمثل الخصائص الجغرافية وخصائص استخدام الأراضي على مدى فترة زمنية شبه ثابتة. ومع ذلك، عند التحقق من صحة قوائم جرد الانهيارات الأرضية متعددة الأزمنة، يمكن الحصول على رؤى أكثر واقعية حول خرائط الحساسية. بالإضافة إلى ذلك، قد تؤدي الأحداث المتطرفة إلى حدوث انهيارات أرضية في المناطق التي لا تعتبر عرضة للانهيارات الأرضية. تسببت زلازل كهرمانماراس في 6 فبراير 2023 (7.7 ميجاوات و 7.6 ميجاوات)، والمعروفة أيضًا باسم كارثة القرن، في العديد من الانهيارات الأرضية. كانت جبال أمانوس الواقعة في جنوب تركيا أيضًا ضمن المنطقة المتضررة من الزلزال وكان لديها كمية صغيرة جدًا من المخزون المسجل في قواعد البيانات الرسمية. كان الهدف من هذه الدراسة هو تقييم أداء طريقة الغابات العشوائية لإنتاج خرائط قابلية الانهيارات الأرضية. تم استخدام المخزون الرسمي للمديرية العامة للبحوث والاستكشافات المعدنية (MTA) لإنتاج الخرائط. تم تقييم خريطة القابلية للتأثر الناتجة باستخدام جرد الانهيارات الأرضية الزلزالية المشتركة الذي تم إنتاجه في الدراسة. أسفر أداء النموذج الذي تم تقييمه باستخدام جزء من بيانات التعلم عن دقة عالية تم التعبير عنها مع منحنى خصائص تشغيل المنطقة تحت جهاز الاستقبال (AUC) والدقة وقيم الاستدعاء ودرجة F1 باستخدام (AUC = 97 ٪، الاستدعاء = 97 ٪، الدقة = 96 ٪، F1 = 98 ٪). ومع ذلك، أظهر التقييم متعدد الأزمنة مع الانهيارات الأرضية الزلزالية المشتركة أنه يمكن التنبؤ بنسبة 80 ٪ من وحدات البكسل للانهيارات الأرضية ذات مستويات الحساسية المعتدلة والعالية والعالية جدًا باستخدام النموذج. تشير النتائج إلى أنه ينبغي إيلاء اهتمام خاص للسمات الممثلة تمثيلاً ناقصًا في المخزون، مثل الارتفاعات المنخفضة وأنواع الخصائص الحجرية.

Translated Description (English)

Abstract. The quality of landslide susceptibility maps is often assessed using a part of learning data that represents geographical and land use characteristics over a quasi-fixed time. However, when validated with multi-temporal landslide inventories, more realistic insights on the susceptibility maps can be obtained. In addition, extreme events may trigger landslides in regions which are not considered as landslide-prone. The February 6, 2023, Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6), also known as the disaster of the century, triggered numerous landslides. Amanos Mountains located in southern Türkiye were also within the earthquake-affected area and had a very small amount of inventory recorded in official databases. The aim of this study was to evaluate the performance of the random forest method for producing landslide susceptibility maps. The official inventory of the General Directorate of Mineral Research and Exploration (MTA) was used for map production. The resulting susceptibility map was assessed using the co-seismic landslide inventory produced in the study. The model's performance evaluated using a part of the learning data yielded high accuracy expressed with area under receiver operating characteristics curve (AUC), precision, and recall values and F1 score using (AUC = 97%, recall = 97%, precision = 96%, F1 = 98%). However, multi-temporal evaluation with co-seismic landslides showed that 80% of the landslide pixels with moderate, high, and very high susceptibility levels could be predicted with the model. The results suggest that special attention should be given to features underrepresented in the inventory, such as low altitudes and types of lithology.

Translated Description (French)

Abstract. The quality of landslide susceptibility maps is often assessed using a part of learning data that represents geographical and land use characteristics over a quasi-fixed time. However, when validated with multi-temporal landslide inventories, more realistic insights on the susceptibility maps can be obtained. In addition, extreme events may trigger landslides in regions which are not considered as landslide-prone. The February 6, 2023, Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6), also known as the disaster of the century, triggered numerous landslides. Amanos Mountains localisé dans le sud de la Turquie était donc dans la zone affectée par le séisme et avait un très petit montant d'inventaire enregistré dans des bases de données officielles. L'objectif de cette étude était d'évaluer les performances de la méthode de la forêt aléatoire pour la production de cartes de la susceptibilité aux glissements de terrain. L'inventaire officiel de la Direction générale de la recherche et de l'exploration minérales (MTA) a été utilisé pour la production cartographique. La carte de la susceptibilité des résultats a été évaluée à l'aide de l'inventaire des glissements de terrain co-sismiques produit dans l'étude. The model' s performance evaluated using a part of the learning data yielded high accuracy expressed with area under receiver operating characteristics curve (AUC), precision, and recall values and F1 score using (AUC = 97 %, recall = 97 %, precision = 96 %, F1 = 98 %). However, multi-temporal evaluation with co-seismic landslides showed that 80% of the landslide pixels with moderate, high, and very high sensibility levels could be predicted with the model. Les résultats suggèrent qu'une attention particulière devrait être accordée aux caractéristiques sous-représentées dans l'inventaire, telles que les faibles altitudes et les types de lithologie.

Translated Description (Spanish)

Abstract. The quality of landslide susceptibility maps is often assessed using a part of learning data that represents geographical and land use characteristics over a quasi-fixed time. However, when validated with multi-temporal landslide inventories, more realistic insights on the susceptibility maps can be obtained. Además, extreme events may trigger landslides in regions which are not considered as landslide-prone. The February 6, 2023, Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6), also known as the disaster of the century, triggered numerous landslides. Amanos Mountains located in southern Türkiye were also within the earthquake-affected area and had a very small amount of inventory recorded in official databases. The aim of this study was to evaluate the performance of the random forest method for producing landslide susceptibility maps. The official inventory of General Directorate of Mineral Research and Exploration (MTA) was used for map production. The resulting susceptibility map was assessed using the co-seismic landslide inventory produced in the study. The model 's performance evaluated using a part of the learning data yielded high accuracy expresed with area under receiver operating characteristics curve (AUC), precision, and recall values and F1 score using (AUC = 97%, recall = 97%, precision = 96%, F1 = 98%). However, multi-temporal evaluation with co-seismic landslides showed that 80% of the landslide pixels with moderate, high, and very high susceptibility levels could be predicted with the model. The results suggest that special attention should be given to features underrepresented in the inventory, such as low altitudes and types of lithology.

Files

isprs-archives-XLVIII-1-W2-2023-429-2023.pdf.pdf

Files (1.7 MB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:059abd6d41c28c57c34547be3cf9cb52
1.7 MB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
التحقق القائم على الانهيار الأرضي المشترك لرسم خرائط الحساسية بعد زلازل كهرمانماراس (6 فبراير 2023) في جبال أمانوس
Translated title (English)
CO-SEISMIC LANDSLIDE BASED VALIDATION OF SUSCEPTIBILITY MAPPING AFTER KAHRAMANMARAS EARTHQUAKES (FEB 6, 2023) IN AMANOS MOUNTAINS
Translated title (French)
CO-SEISMIC LANDSLIDE BASED VALIDATION OF SUSCEPTIBILITY MAPPING AFTER KAHRAMANMARAS EARTHQUAKES (FEB 6, 2023) IN AMANOS MOUNTAINS
Translated title (Spanish)
CO-SEISMIC LANDSLIDE BASED VALIDATION OF SUSCEPTIBILITY MAPPING AFTER KAHRAMANMARAS EARTHQUAKES (FEB 6, 2023) IN AMANOS MOUNTAINS

Identifiers

Other
https://openalex.org/W4389703531
DOI
10.5194/isprs-archives-xlviii-1-w2-2023-429-2023

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Turkey