Published January 1, 2020 | Version v1
Publication Open

Discriminative Multiple Kernel Concept Factorization for Data Representation

  • 1. Institute of Scientific and Technical Information of China
  • 2. Shanxi University

Description

Concept Factorization (CF) improves Nonnegative matrix factorization (NMF), which can be only performed in the original data space, by conducting factorization within proper kernel space where the structure of data become much clear than the original data space.CF-based methods have been widely applied and yielded impressive results in optimal data representation and clustering tasks.However, CF methods still face with the problem of proper kernel function design or selection in practice.Most existing Multiple Kernel Clustering (MKC) algorithms do not sufficiently consider the intrinsic neighborhood structure of base kernels.In this paper, we propose a novel Discriminative Multiple Kernel Concept Factorization method for data representation and clustering.We first extend the original kernel concept factorization with the integration of multiple kernel clustering framework to alleviate the problem of kernel selection.For each base kernel, we extract the local discriminant structure of data via the local discriminant models with global integration.Moreover, we further linearly combine all these kernel-level local discriminant models to obtain an integrated consensus characterization of the intrinsic structure across base kernels.In this way, it is expected that our method can achieve better results by more compact data reconstruction and more faithful local structure preserving.An iterative algorithm with convergence guarantee is also developed to find the optimal solution.Extensive experiments on benchmark datasets further show that the proposed method outperforms many state-of-the-art algorithms.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

يحسن تحليل المفاهيم (CF) تحليل المصفوفة غير السلبية (NMF)، والذي لا يمكن إجراؤه إلا في مساحة البيانات الأصلية، عن طريق إجراء التحليل داخل مساحة النواة المناسبة حيث يصبح هيكل البيانات واضحًا جدًا من مساحة البيانات الأصلية. تم تطبيق الطرق القائمة على CF على نطاق واسع وأسفرت عن نتائج مثيرة للإعجاب في التمثيل الأمثل للبيانات ومهام التجميع. ومع ذلك، لا تزال طرق CF تواجه مشكلة تصميم أو اختيار وظيفة النواة المناسبة في الممارسة العملية. معظم خوارزميات تجميع النواة المتعددة (MKC) الموجودة لا تفعل ذلك النظر بشكل كافٍ في بنية الجوار الجوهرية للحبات الأساسية. في هذه الورقة، نقترح طريقة جديدة لمفهوم النواة المتعددة التمييزية لتمثيل البيانات وتجميعها. نوسع أولاً تحليل مفهوم النواة الأصلي مع دمج إطار تجميع النواة المتعدد للتخفيف من مشكلة اختيار النواة. لكل نواة أساسية، نستخرج البنية التمييزية المحلية للبيانات عبر النماذج التمييزية المحلية مع التكامل العالمي. علاوة على ذلك، نجمع خطيًا بين جميع هذه النماذج التمييزية المحلية على مستوى النواة للحصول على توصيف إجماعي متكامل للبنية الجوهرية عبر النوى الأساسية. وبهذه الطريقة، من المتوقع أن تتمكن طريقتنا من تحقيق نتائج أفضل من خلال إعادة بناء البيانات الأكثر إحكامًا والحفاظ على بنية محلية أكثر إخلاصًا. كما تم تطوير خوارزمية تكرارية مع ضمان التقارب للعثور على الحل الأمثل. كما تُظهر التجارب المكثفة على مجموعات البيانات المعيارية أن الطريقة المقترحة تتفوق على العديد من الخوارزميات الحديثة.

Translated Description (English)

Concept Factorization (CF) improves Nonnegative matrix factorization (NMF), which can only be performed in the original data space, by conducting factorization within proper kernel space where the structure of data becomes very clear than the original data space.CF-based methods have been widely applied and yielded impressive results in optimal data representation and clustering tasks.However, CF methods still face with the problem of proper kernel function design or selection in practice.Most existing Multiple Kernel Clustering (MKC) algorithms do not sufficiently consider the intrinsic neighborhood structure of base kernels.In this paper, we propose a novel Discriminatory Multiple Kernel Concept Factorization method for data representation and clustering.We first extend the original kernel concept factorization with the integration of multiple kernel clustering framework to alleviate the problem of kernel selection.For each base kernel, we extract the local discriminant structure of data via the local discriminant models with global integration.Moreover, we further linearly combine all these kernel-level local discriminant models to obtain an integrated consensus characterization of the intrinsic structure across base kernels.In this way, it is expected that our method can achieve better results by more compact data reconstruction and more faithful local structure preserving.An iterative algorithm with convergence guarantee is also developed to find the optimal solution.Extensive experiments on benchmark datasets further show that the proposed method outperforms many state-of-the-art algorithms.

Translated Description (French)

Concept Factorization (CF) improves Nonegative matrix factorization (NMF), which can be only performed in the original data space, by conducting factorization within proper kernel space where the structure of data become much clear than the original data space.CF-based methods have been widely applied and yielded impressive results in optimal data representation and clustering tasks.However, CF methods still face with the problem of proper kernel function design or selection in practice.Most existing Multiple Kernel Clustering (MKC) algorithms do not suffisently consider the intrinsic neighborhood structure of base kernels.In this paper, we propose a novel Discriminative Multiple Kernel Concept Factorization method for data representation and clustering.We first extend the original kernel concept factorization with the integration of multiple kernel clustering framework to alleviate the problem of kernel selection.For each base kernel, we extract the local discriminant structure of data via the local discriminant models with global integration.Moreover, we further linearly combine allese these kernel-level local discriminant models to obtain an integrated consensus characterization of the intrinsic structure across base kernels.In this way, it is expected that our method can achieve better results by more compact data reconstruction and more faithful local structure preserving.An itérative algorithm with convergence guarantee is also developed to find the optimal solution.Extensive experiments on benchmark datasets further show that the proposed method outperforms many state-of-art algorithms.

Translated Description (Spanish)

Concept Factorization (CF) improves Nonnegative matrix factorization (NMF), which can be only performed in the original data space, by conducting factorization within proper kernel space where the structure of data become much clear than the original data space.CF-based methods have been widely applied and yielded impressive results in optimal data representation and clustering tasks.However, CF methods still face with the problem of proper kernel function design or selection in practice.Most existing Multiple Kernel Clustering (MKC) algorithms do not consideramos suficientemente la estructura intrínseca del vecindario de base kernels.In this paper, we propuso a novel Discriminative Multiple Kernel Concept Factorization method for data representation and clustering.We first extend the original kernel concept factorization with the integration of multiple kernel clustering framework to aliviate the problem of kernel selection.For each base kernel, we extract the local discriminant structure of data via the local discriminant models with global integration.Moreover, we further linearly combine all these kernel-level local discriminant models to obtain an integrated consensus characterization of the intrinsic structure across base kernels.In this way, it is expected that our method can achieve better results by more compact data reconstruction and more faithful local structure preserving.An iterative algorithm with convergence guarantee is also developed to find the optimal solution.Extensive experiments on benchmark datasets further show that the proposed method outperforms many state-of-the-art algorithms.

Files

09205404.pdf.pdf

Files (245 Bytes)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:2fd6ab4f0c3e6e66442b6052359a8d95
245 Bytes
Preview Download

Additional details

Additional titles

Translated title (Arabic)
تحليل مفهوم النواة المتعددة التمييزي لتمثيل البيانات
Translated title (English)
Discriminatory Multiple Kernel Concept Factorization for Data Representation
Translated title (French)
Discriminative Multiple Kernel Concept Factorization for Data Representation
Translated title (Spanish)
Discriminative Multiple Kernel Concept Factorization for Data Representation

Identifiers

Other
https://openalex.org/W3089183676
DOI
10.1109/access.2020.3025045

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
China

References

  • https://openalex.org/W1757045383
  • https://openalex.org/W1902027874
  • https://openalex.org/W1976856620
  • https://openalex.org/W1986817851
  • https://openalex.org/W2003704128
  • https://openalex.org/W2013029404
  • https://openalex.org/W2014069437
  • https://openalex.org/W2035979693
  • https://openalex.org/W2040825516
  • https://openalex.org/W2070670538
  • https://openalex.org/W2081549451
  • https://openalex.org/W2082061052
  • https://openalex.org/W2108995755
  • https://openalex.org/W2121410881
  • https://openalex.org/W2129793592
  • https://openalex.org/W2134773924
  • https://openalex.org/W2136635436
  • https://openalex.org/W2168103112
  • https://openalex.org/W2240479807
  • https://openalex.org/W2404283810
  • https://openalex.org/W2553153235
  • https://openalex.org/W2593539611
  • https://openalex.org/W2732453963
  • https://openalex.org/W2744141159
  • https://openalex.org/W2783924111
  • https://openalex.org/W2808201035
  • https://openalex.org/W2808241692
  • https://openalex.org/W2893830906
  • https://openalex.org/W2898445657
  • https://openalex.org/W2900490505
  • https://openalex.org/W2903321361
  • https://openalex.org/W2921034963
  • https://openalex.org/W2921127954
  • https://openalex.org/W2941197459
  • https://openalex.org/W2947617682
  • https://openalex.org/W2953072908
  • https://openalex.org/W2954752948
  • https://openalex.org/W2964176670
  • https://openalex.org/W2964837678
  • https://openalex.org/W2979028048
  • https://openalex.org/W3036388822
  • https://openalex.org/W3044178239
  • https://openalex.org/W53387266
  • https://openalex.org/W949808319