Published September 17, 2015 | Version v1
Publication Open

MONITORING OF STRUCTURAL INTEGRITY USING UNSUPERVISED DATA CLUSTERING TECHNIQUES

  • 1. Universidade Estadual Paulista (Unesp)

Description

This work presents a comparative study of three unsupervised data clustering techniques used to perform the monitoring of the structural integrity of an agricultural tractor.The techniques used in this study are: K-Means, Fuzzy C-Means and Kohonen artificial neural network.These techniques are intelligent learning tools, which provide a classification of the information based on the similarity clustering.The main application of these tools is to assist in structures inspection process in order to identify and characterize flaws as well as assist in making decisions, avoiding accidents.To evaluate these algorithms the modeling was performed and signs of simulation from a numerical model of an agricultural tractor.The results obtained by the methodologies presented a comparative study.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

يقدم هذا العمل دراسة مقارنة لثلاث تقنيات تجميع بيانات غير خاضعة للإشراف تستخدم لإجراء مراقبة السلامة الهيكلية للجرار الزراعي. التقنيات المستخدمة في هذه الدراسة هي: K - Means و Fuzzy C - Means و Kohonen الشبكة العصبية الاصطناعية. هذه التقنيات هي أدوات تعليمية ذكية، والتي توفر تصنيفًا للمعلومات بناءً على تجميع التشابه. التطبيق الرئيسي لهذه الأدوات هو المساعدة في عملية فحص الهياكل من أجل تحديد وتوصيف العيوب وكذلك المساعدة في اتخاذ القرارات وتجنب الحوادث. لتقييم هذه الخوارزميات، تم إجراء النمذجة وعلامات المحاكاة من نموذج عددي لجرار زراعي. قدمت النتائج التي حصلت عليها المنهجيات دراسة مقارنة.

Translated Description (English)

This work presents a comparative study of three unsupervised data clustering techniques used to perform the monitoring of the structural integrity of an agricultural tractor.The techniques used in this study are: K-Means, Fuzzy C-Means and Kohonen artificial neural network.These techniques are intelligent learning tools, which provide a classification of the information based on the similarity clustering.The main application of these tools is to assist in structures inspection process in order to identify and characterize flaws as well as assist in making decisions, avoiding accidents.To evaluate these algorithms the modeling was performed and signs of simulation from a numerical model of an agricultural tractor.The results obtained by the methodologies presented a comparative study.

Translated Description (French)

This work presents a comparative study of three unsupervised data clustering techniques used to perform the monitoring of the structural integrity of an agricultural tractor.The techniques used in this study are : K-Means, Fuzzy C-Means and Kohonen artificial neural network.These techniques are intelligent learning tools, which provide a classification of the information based on the similarity clustering.The main application of these tools is to assist in structures inspection process in order to identify and characterize flaws as well as assist in making decisions, avoiding accidents.To evaluate these algorithms the modeling was performed and signs of simulation from a numerical model of an agricultural tractor.The results obtained by the methodologies presented a comparative study.

Translated Description (Spanish)

This work presents a comparative study of three unsupervised data clustering techniques used to perform the monitoring of the structural integrity of an agricultural tractor.The techniques used in this study are: K-Means, Fuzzy C-Means and Kohonen artificial neural network.These techniques are intelligent learning tools, which provide a classification of the information based on the similarity clustering.The main application of these tools is to assist in structures inspection process in order to identify and characterize flaws as well assist in making decisions, avoiding accidents.To evaluate these algorithms the modeling was performed and signs of simulation from a numerical model of an agricultural tractor.The results obtained by the methodologiesd a comparative study.

Files

10.pdf.pdf

Files (189.7 kB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:0263aba37e3665b94ba4f658c90bce32
189.7 kB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
مراقبة السلامة الهيكلية باستخدام تقنيات تجميع البيانات غير الخاضعة للإشراف
Translated title (English)
MONITORING OF STRUCTURAL INTEGRITY USING UNSUPERVISED DATA CLUSTERING TECHNIQUES
Translated title (French)
MONITORING OF STRUCTURAL INTEGRITY USING UNSUPERVISED DATA CLUSTERING TECHNIQUES
Translated title (Spanish)
SUPERVISIÓN DE LA INTEGRIDAD ESTRUCTURAL MEDIANTE TÉCNICAS DE AGRUPACIÓN DE DATOS SIN SUPERVISIÓN

Identifiers

Other
https://openalex.org/W2217160578
DOI
10.12732/ijpam.v104i1.10

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Brazil

References

  • https://openalex.org/W1544027360
  • https://openalex.org/W1565377632
  • https://openalex.org/W1938740620
  • https://openalex.org/W1987971958
  • https://openalex.org/W1990368529
  • https://openalex.org/W1990517717
  • https://openalex.org/W1991848143
  • https://openalex.org/W1994646050
  • https://openalex.org/W1995450389
  • https://openalex.org/W2017325890
  • https://openalex.org/W2046162917
  • https://openalex.org/W2108430541
  • https://openalex.org/W2127218421