Published June 30, 2024 | Version v1
Publication

FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE

  • 1. Université Djilali de Sidi Bel Abbès

Description

Employing vision-based hand gesture recognition for the interaction and communication of disabled individuals is highly beneficial. The hands and gestures of this category of people have a distinctive aspect, requiring the adaptation of a deep learning vision-based system with a dedicated dataset for each individual. To achieve this objective, the paper presents a novel approach for training gesture classification using few-shot samples. More specifically, the gesture classifiers are fine-tuned segments of a pre-trained deep network. The global framework consists of two modules. The first one is a base feature learner and a hand detector trained with normal people hand's images; this module results in a hand detector ad hoc model. The second module is a learner sub-classifier; it is the leverage of the convolution layers of the hand detector feature extractor. It builds a shallow CNN trained with few-shot samples for gesture classification. The proposed approach enables the reuse of segments of a pre-trained feature extractor to build a new sub-classification model. The results obtained by varying the size of the training dataset have demonstrated the efficiency of our method compared to the ones of the literature.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

إن توظيف التعرف على إيماءات اليد القائمة على الرؤية لتفاعل الأفراد ذوي الإعاقة وتواصلهم أمر مفيد للغاية. إن أيدي وإيماءات هذه الفئة من الناس لها جانب مميز، يتطلب تكييف نظام قائم على رؤية التعلم العميق مع مجموعة بيانات مخصصة لكل فرد. ولتحقيق هذا الهدف، تقدم الورقة نهجًا جديدًا لتصنيف إيماءات التدريب باستخدام عينات قليلة اللقطات. وبشكل أكثر تحديدًا، فإن مصنفات الإيماءات هي أجزاء دقيقة من شبكة عميقة مدربة مسبقًا. يتكون الإطار العالمي من وحدتين. الأول هو متعلم ذو ميزة أساسية وكاشف يدوي مدرب على صور يد الأشخاص العاديين ؛ ينتج عن هذه الوحدة نموذج مخصص للكشف اليدوي. الوحدة الثانية هي مصنف فرعي للمتعلم ؛ إنها الرافعة المالية لطبقات الالتفاف لمستخرج ميزة الكاشف اليدوي. إنه يبني شبكة سي إن إن ضحلة مدربة مع عينات قليلة اللقطات لتصنيف الإيماءات. يتيح النهج المقترح إعادة استخدام شرائح مستخرج الميزات المدربة مسبقًا لبناء نموذج تصنيف فرعي جديد. أظهرت النتائج التي تم الحصول عليها من خلال تغيير حجم مجموعة بيانات التدريب كفاءة طريقتنا مقارنة بتلك الموجودة في الأدبيات.

Translated Description (English)

Employing vision-based hand gesture recognition for the interaction and communication of disabled individuals is highly beneficial. The hands and gestures of this category of people have a distinctive aspect, requiring the adaptation of a deep learning vision-based system with a dedicated dataset for each individual. To achieve this objective, the paper presents a novel approach for training gesture classification using few-shot samples. More specifically, the gesture classifiers are fine-tuned segments of a pre-trained deep network. The global framework consists of two modules. The first one is a base feature learner and a hand detector trained with normal people hand's images; this module results in a hand detector ad hoc model. The second module is a learner sub-classifier; it is the leverage of the convolution layers of the hand detector feature extractor. It builds a shallow CNN trained with few-shot samples for gesture classification. The proposed approach enables the reuse of segments of a pre-trained feature extractor to build a new sub-classification model. The results obtained by varying the size of the training dataset have demonstrated the efficiency of our method compared to the ones of the literature.

Translated Description (French)

Employing vision-based hand gesture recognition for the interaction and communication of disabled individuals is highly beneficial. The hands and gestures of this category of people have a distinctive aspect, requiring the adaptation of a deep learning vision-based system with a dedicated dataset for each individual. To achieve this objective, the paper presents a novel approach for training gesture classification using few-shot samples. More specifically, the gesture classifiers are fine-tuned segments of a pre-trained deep network. The global framework consists of two modules. The first one is a base feature learner and a hand detector trained with normal people hand's images ; this module results in a hand detector ad hoc model. Le second module est un sous-classificateur d'apprentissage ; c'est l'effet de levier des couches de convolution de l'extracteur de caractéristiques du détecteur à main. It builds a shallow CNN trained with few-shot samples for gesture classification. The proposed approach enables the reuse of segments of a pre-trained feature extractor to build a new sub-classification model. The results obtained by varying the size of the training dataset have demonstrated the efficiency of our method compared to the ones of the literature.

Translated Description (Spanish)

El reconocimiento de gestos manual basado en la visión para el empleo para la interacción y la comunicación de individuos discapacitados es altamente beneficioso. The hands and gestures of this category of people have a distinctivespect, requiring the adaptation of a deep learning vision-based system with a dedicated dataset for each individual. To achieve this objective, the paper presents a novel approach for training gesture classification using few-shot samples. More specifically, the gesture classifiers are fine-tuned segments of a pre-trained deep network. The global framework consists of two modules. The first one is a base feature learner and a hand detector trained with normal people's hand's images; this module results in a hand detector ad hoc model. The second module is a learner sub-classifier; it is the leverage of the convolution layers of the hand detector feature extractor. It builds a shallow CNN trained with few-shot samples for gesture classification. The proposed approach enables the reuse of segments of a pre-trained feature extractor to build a new sub-classification model. The results obtained by varying the size of the training dataset ha demonstrated the efficiency of our method compared to the ones of the literature.

Additional details

Additional titles

Translated title (Arabic)
تعلم FEW - Showt مع تكامل الطبقات المدربة مسبقًا المطبق على التعرف على إيماءات اليد للأشخاص ذوي الإعاقة
Translated title (English)
FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE
Translated title (French)
FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE
Translated title (Spanish)
FEW-SHOT LEARNING WITH PRE-TRAINED LAYERS INTEGRATION APPLIED TO HAND GESTURE RECOGNITION FOR DISABLED PEOPLE

Identifiers

Other
https://openalex.org/W4400164497
DOI
10.35784/acs-2024-13

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Algeria

References

  • https://openalex.org/W1589125571
  • https://openalex.org/W1947050545
  • https://openalex.org/W1993928670
  • https://openalex.org/W2000761799
  • https://openalex.org/W2001374405
  • https://openalex.org/W2031489346
  • https://openalex.org/W2044169976
  • https://openalex.org/W2097117768
  • https://openalex.org/W2119656522
  • https://openalex.org/W2149276562
  • https://openalex.org/W2151103935
  • https://openalex.org/W2165605600
  • https://openalex.org/W2194775991
  • https://openalex.org/W2204609240
  • https://openalex.org/W2288089268
  • https://openalex.org/W2294448957
  • https://openalex.org/W2395579298
  • https://openalex.org/W2471378168
  • https://openalex.org/W2514087538
  • https://openalex.org/W2560934276
  • https://openalex.org/W2752782242
  • https://openalex.org/W2759909135
  • https://openalex.org/W2770887258
  • https://openalex.org/W2772379880
  • https://openalex.org/W2791526950
  • https://openalex.org/W2797061331
  • https://openalex.org/W2891974435
  • https://openalex.org/W2948838601
  • https://openalex.org/W2963037989
  • https://openalex.org/W2963446712
  • https://openalex.org/W2964350391
  • https://openalex.org/W2990998938
  • https://openalex.org/W2993648319
  • https://openalex.org/W2994662721
  • https://openalex.org/W2997930050
  • https://openalex.org/W3000698475
  • https://openalex.org/W3012294468
  • https://openalex.org/W3039588553
  • https://openalex.org/W3089699916
  • https://openalex.org/W3106250896
  • https://openalex.org/W3126986085
  • https://openalex.org/W3183012193
  • https://openalex.org/W4210690866
  • https://openalex.org/W4213031007
  • https://openalex.org/W4234311596
  • https://openalex.org/W4280538209
  • https://openalex.org/W4292821594
  • https://openalex.org/W4297095622
  • https://openalex.org/W4319321406
  • https://openalex.org/W4320005661
  • https://openalex.org/W4365503842