Robin problem involving the $p(x)$-Laplacian operator without Ambrosetti-Rabinowizt condition
Description
The paper deals with the following Robin problem$$\left\lbrace\begin{aligned}- \mathcal{M} \left( \int _{\Omega} \frac{1}{p(x)} \vert \nabla u \vert ^{p(x)} dx + \int _{\partial \Omega } \frac{a(x)}{p(x)} \vert \nabla u \vert ^{p(x)} d \sigma \right) \mathop{\rm div} (\vert \nabla u \vert ^{p(x)-2} \nabla u) = \lambda h(x,u) \ \ \text{ in } \Omega,\\\vert \nabla u \vert ^{p(x)-2} \frac{\partial u}{\partial \nu} + a(x) \vert u \vert ^{p(x)-2} u &=0 \quad \quad \quad \ \text{ on } \partial \Omega .\end{aligned}\right.$$The goal is to determine the precise positive interval of $\lambda $ for which the problem admits at least two nontrivial solutions via variational approach for the above problem without assuming the Ambrosetti-Rabinowitz condition. Next, we give a result on the existence of an unbounded sequence of nontrivial weak solutions by employing the fountain theoreom with Cerami condition.
Translated Descriptions
Translated Description (Arabic)
تتناول الورقة مشكلة روبن التالية $$\ left\ lbrace\begin{aligned }-\mathcal{M}\left (\ int _{\ Omega}\ frac{1 }{ p(x)}\vert \nabla u \vert ^{ p(x )-2}\ nabla u )=\ lambda h (x, u)\\\\text{in}\ Omega,\\ vert\ nabla u \vert ^{ p(x)} d \sigma\ right)\ mathop {\ rm div }(\vert \nabla u\ vert ^{ p(x )-2}\ nabla u )=\ lambda h(x, u)\\\\\ text{ in}\ Omega,\\\vert\ nabla u\ vert ^{ p(x )-2}\ frac {\ partial u }{\ nu} a(x)\vert u\ vert ^{ p(x )-2 }=\quad \ quad text {\ quad} on partial \end\ alme.$$الهدف هو تحديد الفاصل الموجب الدقيق لـ $\lambda $ الذي تعترف المشكلة بحلين غير تافهين على الأقل من خلال نهج متغير للمشكلة المذكورة أعلاه دون افتراض حالة Ambrosetti - Rabinowitz. بعد ذلك، نعطي نتيجة لوجود تسلسل غير محدود من الحلول الضعيفة غير البديهية من خلال استخدام نظرية النافورة مع حالة سيرامي.Translated Description (French)
L'article traite du problème Robin suivant $$\left\lbrace\begin{aligned}- \mathcal{M} \left( \int _{\Omega} \frac{1}{p(x)} \vert \nabla u \vert ^{p(x)} dx + \int _{\partial \Omega } \frac{a (x)}{p(x)} \vert \nabla u \vert ^{p(x)} d \sigma \right) \mathop{\rm div} (\vert \nabla u \vert ^{p(x)-2} \nabla u) = \lambda h(x,u) \ \ \text{ in } \Omega,\\\vert \nabla u \vert ^{p(x)-2} \frac{\partial u}{\partial \nu} + a (x) \vert u \vert ^{p(x)-2} u &=0 \quad \quad \quad \ \text{on} \partial \Omega .\end{aligned}\right.$$L'objectif est de déterminer l'intervalle positif précis de $ \lambda $ pour lequel le problème admet au moins deux solutions non triviales via une approche variationnelle pour le problème ci-dessus sans supposer la condition d'Ambrosetti-Rabinowitz. Ensuite, nous donnons un résultat sur l'existence d'une séquence illimitée de solutions faibles non triviales en utilisant le théorème de la fontaine avec condition de Cerami.Translated Description (Spanish)
El documento trata el siguiente problema de Robin $$\left\lbrace\begin{aligned}- \mathcal{M} \left( \int _{\Omega} \frac{1}{p(x)} \vert \nabla u \vert ^{p(x)} dx + \int _{\partial \Omega } \frac{a (x)}{p(x)} \vert \nabla u \vert ^{p(x)} d \sigma \right) \mathop{\rm div} (\vert \nabla u \vert ^{p(x)-2} \nabla u) = \lambda h(x,u) \\ \ \text{ in } \Omega,\\vert \nabla u \vert ^{p(x)-2} \frac{\partial u}{\partial \nu} + a (x) \vert u \vert ^{p(x)-2} u &=0 \quad \quad \quad \\ \text on {} \partial \Omega .\end{aligned}\right.$$El objetivo es determinar el intervalo positivo preciso de $\lambda $ para el cual el problema admite al menos dos soluciones no triviales mediante un enfoque variacional para el problema anterior sin asumir la condición de Ambrosetti-Rabinowitz. A continuación, damos un resultado sobre la existencia de una secuencia ilimitada de soluciones débiles no triviales empleando la teoría de la fuente con la condición de Cerami.Additional details
Additional titles
- Translated title (Arabic)
- مشكلة روبن التي تنطوي على مشغل $p(x )$-Laplacian بدون شرط Ambrosetti - Rabinowizt
- Translated title (French)
- Problème Robin impliquant l'opérateur $p(x)$ -Laplacian sans condition Ambrosetti-Rabinowizt
- Translated title (Spanish)
- Problema de Robin que involucra al operador $p(x)$ -Laplacian sin condición de Ambrosetti-Rabinowizt
Identifiers
- Other
- https://openalex.org/W4399320143
- DOI
- 10.5269/bspm.65522
            
              References
            
          
        - https://openalex.org/W1482163423
- https://openalex.org/W1486358692
- https://openalex.org/W1970728204
- https://openalex.org/W1981288703
- https://openalex.org/W2018035406
- https://openalex.org/W2023190787
- https://openalex.org/W2023933251
- https://openalex.org/W2034447457
- https://openalex.org/W2039329837
- https://openalex.org/W2088947681
- https://openalex.org/W2182297296
- https://openalex.org/W2345442570
- https://openalex.org/W2770389360
- https://openalex.org/W2811327782
- https://openalex.org/W3211985044
- https://openalex.org/W4366697934
- https://openalex.org/W4385144696