META-HEURISTIC OPTIMIZATION ALGORITHMS BASED FEATURE SELECTION FOR CLINICAL BREAST CANCER DIAGNOSIS
- 1. Helwan University
- 2. Cairo University
Description
Breast cancer is the leading cause of cancer death among women in the whole world. Meanwhile, early detection andaccurate diagnosis can increase the chances of making the right decision on a successful treatment process. This articlepresents a two-step system that rst uses four dierent swarm algorithms namely; whale optimization algorithm, greywolf optimizer, ower pollination algorithm, and moth ame optimization for feature selection purpose. Then, severalclassiers are applied including support vector machines, k-nearest neighbor, and decision tree. The performance of eachalgorithm is evaluated using ve dierent aspects; classication based measurements, convergence, computational time,statistical measurements and stability. The obtained results from the proposed algorithms are compared and analyzedwith other algorithms published in breast cancer diagnosis. The experimental using Wisconsin breast cancer diagnosisand Wisconsin prognosis breast cancer (WPBC) datasets outcomes positively that the proposed system was eective inundertaking breast cancer data classication and features selection tasks
Translated Descriptions
Translated Description (Arabic)
سرطان الثدي هو السبب الرئيسي للوفاة بالسرطان بين النساء في العالم بأسره. وفي الوقت نفسه، يمكن أن يزيد الكشف المبكر والتشخيص الدقيق من فرص اتخاذ القرار الصحيح بشأن عملية علاج ناجحة. تقدم هذه المقالة نظامًا من خطوتين يستخدم أربع خوارزميات مختلفة للسرب وهي ؛ خوارزمية تحسين الحيتان، ومحسن الذئب الرمادي، وخوارزمية تلقيح البومة، وتحسين العث لغرض اختيار الميزة. بعد ذلك، يتم تطبيق العديد من الفئات بما في ذلك آلات ناقلات الدعم، وأقرب جيران k، وشجرة القرار. يتم تقييم أداء كل خوارزمية باستخدام جوانب مختلفة ؛ القياسات القائمة على التصنيف والتقارب والوقت الحسابي والقياسات الإحصائية والاستقرار. تتم مقارنة النتائج التي تم الحصول عليها من الخوارزميات المقترحة وتحليلها مع الخوارزميات الأخرى المنشورة في تشخيص سرطان الثدي. التجربة باستخدام ويسكونسن تشخيص سرطان الثدي و ويسكونسن تشخيص سرطان الثدي (WPBC) مجموعات البيانات النتائج الإيجابية أن النظام المقترح كان فعالا في إجراء تصنيف بيانات سرطان الثدي ويتميز بمهام الاختيارTranslated Description (English)
Breast cancer is the leading cause of cancer death among women in the whole world. Meanwhile, early detection andaccurate diagnosis can increase the chances of making the right decision on a successful treatment process. This article presents a two-step system that uses four dierent swarm algorithms namely; whale optimization algorithm, greywolf optimizer, ower pollination algorithm, and moth ame optimization for feature selection purpose. Then, several classes are applied including support vector machines, k-nearest neighbor, and decision tree. The performance of each algorithm is evaluated using different aspects; classication based measurements, convergence, computational time,statistical measurements and stability. The results obtained from the proposed algorithms are compared and analyzed with other algorithms published in breast cancer diagnosis. The experimental using Wisconsin breast cancer diagnosisand Wisconsin prognosis breast cancer (WPBC) datasets outcomes positively that the proposed system was eective inundertaking breast cancer data classication and features selection tasksTranslated Description (French)
Le cancer du sein est la principale cause de décès par cancer chez les femmes dans le monde entier. Meanwhile, early detection andaccurate diagnosis can increase the chances of making the right decision on a successful treatment process. This article presents a two-step system that rst uses four di erent swarm algorithms namely ; whale optimization algorithm, greywolf optimizer, ower pollination algorithm, and moth ame optimization for feature selection purpose. Then, severalclassiers are applied including support vector machines, k-nearest neighbor, and decision tree. La performance de eachalgorithm est évaluée à l'aide de ve di erent aspects ; classication based measurements, convergence, computational time,statistical measurements and stability. The obtained results from the proposed algorithms are compared and analyzedwith other algorithms published in breast cancer diagnosis. The experimental using Wisconsin breast cancer diagnosisand Wisconsin prognosis breast cancer (WPBC) datasets outcomes positivement that the proposed system was ective inundertaking breast cancer data classication and features selection tasksTranslated Description (Spanish)
El cáncer de mama es la causa principal de la muerte por cáncer entre las mujeres en todo el mundo. Meanwhile, early detection andaccurate diagnosis can increase the chances of making the right decision on a successful treatment process. This articlepresents a two-step system that rst uses four dierent swarm algorithms namely; whale optimization algorithm, greywolf optimizer, ower pollination algorithm, and moth ame optimization for feature selection purpose. Then, severalclassiers are applied including support vector machines, k-nearest neighbor, and decision tree. The performance of eachalgorithm is evaluated using ve dierent Aspektets; classication based measurements, convergence, computational time,statistical measurements and stability. The obtained results from the proposed algorithms are compared and analyzedwith other algorithms published in breast cancer diagnosis. The experimental using Wisconsin breast cancer diagnosisand Wisconsin prognosis breast cancer (WPBC) datasets outcomes positively that the proposed system was eective inundertaking breast cancer data classication and features selection tasksAdditional details
Additional titles
- Translated title (Arabic)
- اختيار الميزات القائمة على خوارزميات تحسين META - HEURISTIC لتشخيص سرطان الثدي السريري
- Translated title (English)
- META-HEURISTIC OPTIMIZATION ALGORITHMS BASED FEATURE SELECTION FOR CLINICAL BREAST CANCER DIAGNOSIS
- Translated title (French)
- META-HEURISTIC OPTIMIZATION ALGORITHMS BASED FEATURE SELECTION FOR CLINICAL BREAST CANCER DIAGNOSIS
- Translated title (Spanish)
- META-HEURISTIC OPTIMIZATION ALGORITHMS BASED FEATURE SELECTION FOR CLINICAL BREAST CANCER DIAGNOSIS
Identifiers
- Other
- https://openalex.org/W2908188855
- DOI
- 10.21608/jomes.2018.2673.1023
References
- https://openalex.org/W2110250181
- https://openalex.org/W2158698691
- https://openalex.org/W2509315261
- https://openalex.org/W2535442570
- https://openalex.org/W2745869571
- https://openalex.org/W3100933494