Computing <i>N</i>-dimensional polytrope <i>via</i> power series
- 1. National Research Institute of Astronomy and Geophysics
- 2. Al Azhar University
- 3. King Saud University
Description
Abstract Polytropic equations (Lane–Emden [LE] equations) are valuable because they offer a simple explanation for a star's interior structure, interstellar matter, molecular clouds, and even spiral arms that can be calculated and used to estimate various physical parameters. Many analytical and numerical methods are used to solve the polytropic LE equation. The series expansion method played an essential role in many areas of science and has found application in many branches of physical science. This work uses the series expansion method to examine N -dimensional polytropes ( i.e. , slab, cylinder, and sphere). To solve LE-type equations, a computational method based on accelerated series expansion (ASE) is applied. We calculate several models for the N -dimensional polytropes. The numerical results show good agreement between the ASE and numerical and analytical models of the N -dimensional polytropes.
Translated Descriptions
Translated Description (Arabic)
تعتبر المعادلات التجريدية متعددة الاتجاهات (معادلات لين- إمدن [LE]) ذات قيمة لأنها تقدم شرحًا بسيطًا للبنية الداخلية للنجم، والمادة بين النجوم، والغيوم الجزيئية، وحتى الأذرع الحلزونية التي يمكن حسابها واستخدامها لتقدير المعلمات الفيزيائية المختلفة. يتم استخدام العديد من الطرق التحليلية والعددية لحل المعادلة متعددة الاتجاهات. لعبت طريقة توسيع السلسلة دورًا أساسيًا في العديد من مجالات العلوم ووجدت تطبيقًا في العديد من فروع العلوم الفيزيائية. يستخدم هذا العمل طريقة توسيع السلسلة لفحص متعددات الأبعاد N ( أي البلاطة والأسطوانة والكرة). لحل معادلات من النوع LE، يتم تطبيق طريقة حسابية تعتمد على التمدد المتسلسل المتسارع (ASE). نحسب العديد من النماذج للبوليتروبيات ذات الأبعاد N. تُظهر النتائج العددية توافقًا جيدًا بين ASE والنماذج العددية والتحليلية للأشكال المتعددة الأبعاد N.Translated Description (English)
Abstract Polytropic equations (Lane–Emden [LE] equations) are valuable because they offer a simple explanation for a star's interior structure, interstellar matter, molecular clouds, and even spiral arms that can be calculated and used to estimate various physical parameters. Many analytical and numerical methods are used to solve the polytropic equation. The series expansion method played an essential role in many areas of science and has found application in many branches of physical science. This work uses the series expansion method to examine N -dimensional polytropes ( i.e. , slab, cylinder, and sphere). To solve LE-type equations, a computational method based on accelerated series expansion (ASE) is applied. We calculate several models for the N -dimensional polytropes. The numerical results show good agreement between the ASE and numerical and analytical models of the N -dimensional polytropes.Translated Description (French)
Abstract Polytropic equations (Lane–Emden [LE] equations) are valuable because they offer a simple explanation for a star's interior structure, interstellar matter, molecular clouds, and even spiral arms that can be calculated and used to estimate various physical parameters. Many analytical and numerical methods are used to solve the polytropic LE equation. The series expansion method played an essential role in many areas of science and has found application in many branches of physical science. This work uses the series expansion method to examin N -dimensional polytropes ( i.e. , slab, cylinder, and sphere). To solve LE-type equations, a computational method based on accelerated series expansion (ASE) is applied. We calculate several models for the N -dimensional polytropes. The numerical results show good agreement between the ASE and numerical and analytical models of the N -dimensional polytropes.Translated Description (Spanish)
Abstract Polytropic equations (Lane–Emden [LE] equations) are valuable because they offer a simple explanation for a star 's interior s structure, interstellar matter, molecular clouds, and even spiral arms that can be calculated and used to estimate various physical parameters. Many analytical and numerical methods are used to solve the polytropic LE equation. The series expansion method played an essential role in many areas of science and has found application in many branches of physical science. This work uses the series expansion method to examine N -dimensional polytropes ( i.e. , slab, cylinder, and sphere). To solve LE-type equations, a computational method based on accelerated series expansion (ase) is applied. We calculate several models for the N -dimensional polytropes. The numerical results show good agreement between the ase and numerical and analytical models of the N -dimensional polytropes.Files
pdf.pdf
Files
(5.0 MB)
| Name | Size | Download all |
|---|---|---|
|
md5:fd94365ce88a35bc5f357a3009ad3ea6
|
5.0 MB | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- حوسبة <i>N</i> - dimensional polytrope <i>عبر</i> سلسلة الطاقة
- Translated title (English)
- <i>N</i>-dimensional polytrope computing <i>via</i> power series
- Translated title (French)
- Computing <i>N</i>-dimensional polytrope <i>via</i> power series
- Translated title (Spanish)
- Computing <i>N</i>-dimensional polytrope <i>via</i> power series
Identifiers
- Other
- https://openalex.org/W4394772860
- DOI
- 10.1515/astro-2022-0230
References
- https://openalex.org/W1610300212
- https://openalex.org/W1975854248
- https://openalex.org/W1979719431
- https://openalex.org/W1996121562
- https://openalex.org/W2015920164
- https://openalex.org/W2022664105
- https://openalex.org/W2034094163
- https://openalex.org/W2068705444
- https://openalex.org/W2085702369
- https://openalex.org/W2119017064
- https://openalex.org/W2274503602
- https://openalex.org/W2317731414
- https://openalex.org/W2331034993
- https://openalex.org/W2796908055
- https://openalex.org/W3020669528
- https://openalex.org/W3034867175
- https://openalex.org/W4309580192
- https://openalex.org/W4389426324