Para-Kähler-Einstein 4-manifolds and non-integrable twistor distributions
Creators
- 1. Mathematics Research Center
- 2. Center for Theoretical Physics
Description
Abstract We study the local geometry of 4-manifolds equipped with a para-Kähler-Einstein (pKE) metric, a special type of split-signature pseudo-Riemannian metric, and their associated twistor distribution , a rank 2 distribution on the 5-dimensional total space of the circle bundle of self-dual null 2-planes. For pKE metrics with non-zero scalar curvature this twistor distribution has exactly two integral leaves and is 'maximally non-integrable' on their complement, a so-called (2,3,5)-distribution. Our main result establishes a simple correspondence between the anti-self-dual Weyl tensor of a pKE metric with non-zero scalar curvature and the Cartan quartic of the associated twistor distribution. This will be followed by a discussion of this correspondence for general split-signature metrics which is shown to be much more involved. We use Cartan's method of equivalence to produce a large number of explicit examples of pKE metrics with non-zero scalar curvature whose anti-self-dual Weyl tensor have special real Petrov type. In the case of real Petrov type D , we obtain a complete local classification. Combined with the main result, this produces twistor distributions whose Cartan quartic has the same algebraic type as the Petrov type of the constructed pKE metrics. In a similar manner, one can obtain twistor distributions with Cartan quartic of arbitrary algebraic type. As a byproduct of our pKE examples we naturally obtain para-Sasaki-Einstein metrics in five dimensions. Furthermore, we study various Cartan geometries naturally associated to certain classes of pKE 4-dimensional metrics. We observe that in some geometrically distinguished cases the corresponding Cartan connections satisfy the Yang-Mills equations. We then provide explicit examples of such Yang-Mills Cartan connections.
Translated Descriptions
Translated Description (Arabic)
ندرس الهندسة المحلية لأربعة مشعبات مجهزة بمقياس بارا- كالر- أينشتاين (PKE)، وهو نوع خاص من مقاييس ريمانيان الزائفة ذات التوقيع المنقسم، وتوزيعها الملتوي المرتبط بها، وهو توزيع من المرتبة 2 على المساحة الإجمالية خماسية الأبعاد لحزمة الدائرة من مستويين فارغين ذاتيي الازدواج. بالنسبة لمقاييس pKE ذات الانحناء القياسي غير الصفري، يحتوي هذا التوزيع الملتوي على ورقتين متكاملتين بالضبط وهو "غير قابل للتدوير إلى أقصى حد" على مكملها، وهو ما يسمى بالتوزيع (2،3،5). تحدد نتيجتنا الرئيسية تطابقًا بسيطًا بين موتر Weyl المضاد للازدواجية الذاتية لمقياس pKE مع انحناء رقمي غير صفري والرباعي الكارتاني لتوزيع اللولب المرتبط. وسيتبع ذلك مناقشة لهذه المراسلات للمقاييس العامة للتوقيع المنقسم والتي يتضح أنها أكثر مشاركة. نستخدم طريقة كارتان للتكافؤ لإنتاج عدد كبير من الأمثلة الصريحة لمقاييس PKE مع انحناء قياسي غير صفري يكون لموتر Weyl المضاد للازدواجية الذاتية نوع خاص حقيقي من Petrov. في حالة نوع بيتروف الحقيقي D ، نحصل على تصنيف محلي كامل. وبالاقتران مع النتيجة الرئيسية، ينتج عن ذلك توزيعات ملتوية يكون لرباعيها الكارتاني نفس النوع الجبري مثل نوع بتروف لمقاييس pKE المبنية. بطريقة مماثلة، يمكن للمرء الحصول على توزيعات ملتوية من النوع الكارتاني الرباعي أو الجبري التعسفي. كمنتج ثانوي لأمثلة pKE الخاصة بنا، نحصل بشكل طبيعي على مقاييس شبه ساساكي- أينشتاين في خمسة أبعاد. علاوة على ذلك، ندرس مختلف هندسة الكارتان المرتبطة بشكل طبيعي بفئات معينة من مقاييس pKE رباعية الأبعاد. نلاحظ أنه في بعض الحالات المتميزة هندسيًا، تلبي وصلات الكارتان المقابلة معادلات يانغ- ميلز. ثم نقدم أمثلة صريحة على مثل هذه الروابط بين يانغ وميلز كارتان.Translated Description (English)
Abstract We study the local geometry of 4-manifolds equipped with a para-Kähler-Einstein (pKE) metric, a special type of split-signature pseudo-Riemannian metric, and their associated twistor distribution , a rank 2 distribution on the 5-dimensional total space of the circle bundle of self-dual null 2-planes. For pKE metrics with non-zero scalar curvature this twistor distribution has exactly two integral leaves and is' maximally non-integrable 'on their complement, a so-called (2,3,5)distribution. Our main result establishes a simple correspondence between the anti-self-dual Weyl tensor of a pKE metric with non-zero scalar curvature and the Cartan quartic of the associated twistor distribution. This will be followed by a discussion of this correspondence for general split-signature metrics which is shown to be much more involved. We use Cartan's method of equivalence to produce a large number of explicit examples of pKE metrics with non-zero scalar curvature whose anti-self-dual Weyl tensor have special real Petrov type. In the case of real Petrov type D , we obtain a complete local classification. Combined with the main result, this produces twistor distributions whose Cartan quartic has the same algebraic type as the Petrov type of the constructed pKE metrics. In a similar manner, one can obtain twistor distributions with Cartan quartic or arbitrary algebraic type. As a byproduct of our pKE examples, we naturally obtain para-Sasaki-Einstein metrics in five dimensions. Furthermore, we study various Cartan geometries naturally associated to certain classes of pKE 4-dimensional metrics. We observe that in some geometrically distinguished cases the corresponding Cartan connections satisfy the Yang-Mills equations. We then provide explicit examples of such Yang-Mills Cartan connections.Translated Description (French)
Abstract We study the local geometry of 4-manifolds equipped with a para-Kähler-Einstein (pKE) metric, a special type of split-signature pseudo-Riemannian metric, and their associated twistor distribution , a rank 2 distribution on the 5-dimensional total space of the circle bundle of self-dual null 2-planes. For pKE metrics with non-zero scalar curvature this twistor distribution has exactly two integral leaves and is 'maximally non-integrable' on their complement, a so-called (2,3,5)-distribution. Our main result establishes a simple correspondence between the anti-self-dual Weyl tensor of a pKE metric with non-zero scalar curvature and the Cartan quartic of the associated twistor distribution. This will be followed by a discussion of this correspondence for general split-signature metrics which is shown to be much more involved. We use Cartan' s method of equivalence to produce a large number of explicit examples of pKE metrics with non-zero scalar curvature whose anti-self-dual Weyl tensor have special real Petrov type. Dans le cas du vrai Petrov de type D , nous maintenons une classification locale complète. Combiné avec le résultat principal, ce produit distributions twistor whose Cartan quartic has the same algebraic type as the Petrov type of the constructed pKE metrics. In a similar manner, one can obtain twistor distributions with Cartan quartic of arbitrary algebraic type. As a byproduct of our pKE examples we naturally obtain para-Sasaki-Einstein metrics in five dimensions. Furthermore, we study various Cartan geometries naturally associated to certain classes of pKE 4-dimensional metrics. We observe that in some geometrically distinguished cases the corresponding Cartan connections satisfy the Yang-Mills equations. We then provide explicit examples of such Yang-Mills Cartan connections.Translated Description (Spanish)
Abstract We study the local geometry of 4-manifolds equipped with a para-Kähler-Einstein (pKE) metric, a special type of split-signature pseudo-Riemannian metric, and their associated twistor distribution , a rank 2 distribution on the 5-dimensional total space of the circle bundle of self-dual null 2-planes. For pKE metrics with non-zero scalar curvature this twistor distribution has exactly two integral leaves and is 'maximally non-integrable' on their complement, a so-called (2,3,5)-distribution. Our main result establishes a simple correspondence between the anti-self-dual Weyl tensor of a pKE metric with non-zero scalar curvature and the Cartan quartic of the associated twistor distribution. This will be followed by a discussion of this correspondence for general split-signature metrics which is shown to be much more involved. We use Cartan 's method of equivalence to produce a large number of explicit examples of pKE metrics with non-zero scalar curvature whose anti-self-dual Weyl tensor have special real Petrov type. In the case of real Petrov type D , we obtain a complete local classification. Combinado con el resultado principal, estas distribuciones de twistor de productos que contienen Cartan quartic has the same algebraic type as the Petrov type of the constructed pKE metrics. In a similar manner, one can obtain twistor distributions with Cartan quartic of arbitrary algebraic type. As a byproduct of our pKE examples we naturally obtain para-Sasaki-Einstein metrics in five dimensions. Furthermore, we study various Cartan geometries naturally associated to certain classes of pKE 4-dimensional metrics. We observe that in some geometrically distinguished cases the corresponding Cartan connections satisfacy the Yang-Mills equations. We then provide explicit examples of such Yang-Mills Cartan connections.Files
s10711-021-00665-4.pdf.pdf
Files
(818.1 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:5d62fa454007382f30d5dd9aa98c55d9
|
818.1 kB | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- توزيعات بارا- كالر- أينشتاين رباعية الفتحات وغير قابلة للتدوير
- Translated title (English)
- Para-Kähler-Einstein 4-manifolds and non-integrable twistor distributions
- Translated title (French)
- Para-Kähler-Einstein 4-manifolds and non-integrable twistor distributions
- Translated title (Spanish)
- Para-Kähler-Einstein 4-manifolds and non-integrable twistor distributions
Identifiers
- Other
- https://openalex.org/W3085954510
- DOI
- 10.1007/s10711-021-00665-4
References
- https://openalex.org/W1753847936
- https://openalex.org/W1978881953
- https://openalex.org/W1983250767
- https://openalex.org/W1988700387
- https://openalex.org/W2008310509
- https://openalex.org/W2030416357
- https://openalex.org/W2041611208
- https://openalex.org/W2058363851
- https://openalex.org/W2078471063
- https://openalex.org/W2081303272
- https://openalex.org/W2122232935
- https://openalex.org/W2229744558
- https://openalex.org/W2331077983
- https://openalex.org/W2406707337
- https://openalex.org/W2497406047
- https://openalex.org/W2506973712
- https://openalex.org/W2514791618
- https://openalex.org/W2963712867
- https://openalex.org/W2964292310
- https://openalex.org/W3098477545
- https://openalex.org/W3102589682
- https://openalex.org/W4230836784