Published April 30, 2018 | Version v1
Publication Open

A COMPARATIVE ANALYSIS OF SPATIOTEMPORAL DATA FUSION MODELS FOR LANDSAT AND MODIS DATA

  • 1. Yarmouk University

Description

Abstract. In this study, three documented spatiotemporal data fusion models were applied to Landsat-7 and MODIS surface reflectance, and NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), sparse representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using a one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

الملخص في هذه الدراسة، تم تطبيق ثلاثة نماذج موثقة لدمج البيانات المكانية والزمانية على انعكاس سطح لاندسات-7 وموديس، و NDVI. تضمنت الخوارزميات نموذج اندماج الانعكاس التكيفي المكاني والزماني (STARFM)، والتمثيل المتناثر بناءً على نموذج اندماج الانعكاس المكاني والزماني (SPSTFM)، ونموذج اندماج الصور المكانية والزمانية (STI - FM). كانت أهداف هذه الدراسة هي (1) مقارنة أداء نماذج الاندماج الثلاثة هذه باستخدام أزواج صور الانعكاس الطيفي Landsat - MODIS باستخدام مجموعات بيانات السلاسل الزمنية من منطقة الري Coleambally في أستراليا، و (2) التقييم الكمي لدقة الصور الاصطناعية الناتجة عن كل نموذج اندماج باستخدام القياسات الإحصائية. أظهرت النتائج أن نماذج الاندماج الثلاثة تنبأت بصورة لاندسات-7 الاصطناعية باتفاقيات كافية. أنتجت STI - FM عمليات إعادة بناء أكثر دقة لكل من النطاقات الطيفية Landsat -7 و NDVI. علاوة على ذلك، أنتجت صور انعكاس السطح التي لها أعلى ارتباط مع صور لاندسات-7 الفعلية. أشارت هذه الدراسة إلى أن STI - FM ستكون أكثر ملاءمة لتطبيقات دمج البيانات المكانية والزمانية مثل مراقبة الغطاء النباتي ومراقبة الجفاف والتبخر والنتح.

Translated Description (English)

Abstract In this study, three documented spatiotemporal data fusion models were applied to Landsat-7 and MODIS surface reflectance, and NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), sparse representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.

Translated Description (French)

Résumé. Dans cette étude, trois modèles de fusion de données spatiotemporales documentés ont été appliqués à Landsat-7 et à MODIS surface reflectance, et NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), sparse representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using a one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.

Translated Description (Spanish)

Abstract. In this study, three documented spatiotemporal data fusion models were applied to Landsat-7 and MODIS surface reflectance, and NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), spare representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using a one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.

Files

isprs-archives-XLII-3-491-2018.pdf.pdf

Files (808.9 kB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:94f6a6feab77ab5c6dd95d14e75d3a51
808.9 kB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
تحليل مقارن لنماذج دمج البيانات المكانية الحرارية لبيانات لاندسات وموديز
Translated title (English)
A COMPARATIVE ANALYSIS OF SPATIOTEMPORAL DATA FUSION MODELS FOR LANDSAT AND MODIS DATA
Translated title (French)
A COMPARATIVE ANALYSIS OF SPATIOTEMPORAL DATA FUSION MODELS FOR LANDSAT AND MODIS DATA
Translated title (Spanish)
A COMPARATIVE ANALYSIS OF SPATIOTEMPORAL DATA FUSION MODELS FOR LANDSAT AND MODIS DATA

Identifiers

Other
https://openalex.org/W2802591880
DOI
10.5194/isprs-archives-xlii-3-491-2018

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Jordan

References

  • https://openalex.org/W1560372614
  • https://openalex.org/W2027776168
  • https://openalex.org/W2056811372
  • https://openalex.org/W2061292865
  • https://openalex.org/W2061929982
  • https://openalex.org/W2067234885
  • https://openalex.org/W2134500407
  • https://openalex.org/W2614892327