A COMPARATIVE ANALYSIS OF SPATIOTEMPORAL DATA FUSION MODELS FOR LANDSAT AND MODIS DATA
Description
Abstract. In this study, three documented spatiotemporal data fusion models were applied to Landsat-7 and MODIS surface reflectance, and NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), sparse representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using a one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.
Translated Descriptions
Translated Description (Arabic)
الملخص في هذه الدراسة، تم تطبيق ثلاثة نماذج موثقة لدمج البيانات المكانية والزمانية على انعكاس سطح لاندسات-7 وموديس، و NDVI. تضمنت الخوارزميات نموذج اندماج الانعكاس التكيفي المكاني والزماني (STARFM)، والتمثيل المتناثر بناءً على نموذج اندماج الانعكاس المكاني والزماني (SPSTFM)، ونموذج اندماج الصور المكانية والزمانية (STI - FM). كانت أهداف هذه الدراسة هي (1) مقارنة أداء نماذج الاندماج الثلاثة هذه باستخدام أزواج صور الانعكاس الطيفي Landsat - MODIS باستخدام مجموعات بيانات السلاسل الزمنية من منطقة الري Coleambally في أستراليا، و (2) التقييم الكمي لدقة الصور الاصطناعية الناتجة عن كل نموذج اندماج باستخدام القياسات الإحصائية. أظهرت النتائج أن نماذج الاندماج الثلاثة تنبأت بصورة لاندسات-7 الاصطناعية باتفاقيات كافية. أنتجت STI - FM عمليات إعادة بناء أكثر دقة لكل من النطاقات الطيفية Landsat -7 و NDVI. علاوة على ذلك، أنتجت صور انعكاس السطح التي لها أعلى ارتباط مع صور لاندسات-7 الفعلية. أشارت هذه الدراسة إلى أن STI - FM ستكون أكثر ملاءمة لتطبيقات دمج البيانات المكانية والزمانية مثل مراقبة الغطاء النباتي ومراقبة الجفاف والتبخر والنتح.Translated Description (English)
Abstract In this study, three documented spatiotemporal data fusion models were applied to Landsat-7 and MODIS surface reflectance, and NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), sparse representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.Translated Description (French)
Résumé. Dans cette étude, trois modèles de fusion de données spatiotemporales documentés ont été appliqués à Landsat-7 et à MODIS surface reflectance, et NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), sparse representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using a one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.Translated Description (Spanish)
Abstract. In this study, three documented spatiotemporal data fusion models were applied to Landsat-7 and MODIS surface reflectance, and NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), spare representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using a one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.Files
      
        isprs-archives-XLII-3-491-2018.pdf.pdf
        
      
    
    
      
        Files
         (808.9 kB)
        
      
    
    | Name | Size | Download all | 
|---|---|---|
| md5:94f6a6feab77ab5c6dd95d14e75d3a51 | 808.9 kB | Preview Download | 
Additional details
Additional titles
- Translated title (Arabic)
- تحليل مقارن لنماذج دمج البيانات المكانية الحرارية لبيانات لاندسات وموديز
- Translated title (English)
- A COMPARATIVE ANALYSIS OF SPATIOTEMPORAL DATA FUSION MODELS FOR LANDSAT AND MODIS DATA
- Translated title (French)
- A COMPARATIVE ANALYSIS OF SPATIOTEMPORAL DATA FUSION MODELS FOR LANDSAT AND MODIS DATA
- Translated title (Spanish)
- A COMPARATIVE ANALYSIS OF SPATIOTEMPORAL DATA FUSION MODELS FOR LANDSAT AND MODIS DATA
Identifiers
- Other
- https://openalex.org/W2802591880
- DOI
- 10.5194/isprs-archives-xlii-3-491-2018
            
              References
            
          
        - https://openalex.org/W1560372614
- https://openalex.org/W2027776168
- https://openalex.org/W2056811372
- https://openalex.org/W2061292865
- https://openalex.org/W2061929982
- https://openalex.org/W2067234885
- https://openalex.org/W2134500407
- https://openalex.org/W2614892327