Published October 1, 2016
| Version v1
Publication
Open
NEW TRAVELLING WAVE SOLUTIONS FOR NEW POTENTIAL NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
Description
In this paper we apply the extended hyperbolic functions method, to solve the potential Padé-II equation and the potential Benjamin-Bona-Mahony (BBM) equation.Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions and trigonometric functions.The extended hyperbolic functions method, is the used method for solving other nonlinear evalution equations.
Translated Descriptions
⚠️
This is an automatic machine translation with an accuracy of 90-95%
Translated Description (Arabic)
في هذه الورقة، نطبق طريقة الدوال القطعية الممتدة، لحل معادلة Padé - II المحتملة ومعادلة Benjamin - Bona - Mahony (BBM) المحتملة. يتم الحصول على حلول موجات السفر الدقيقة والتعبير عنها من حيث الدوال القطعية والدوال المثلثية. طريقة الدوال القطعية الممتدة، هي الطريقة المستخدمة لحل معادلات التقييم غير الخطية الأخرى.Translated Description (English)
In this paper we apply the extended hyperbolic functions method, to solve the potential Padé-II equation and the potential Benjamin-Bona-Mahony (BBM) equation.Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions and trigonometric functions.The extended hyperbolic functions method, is the method used for solving other nonlinear evalution equations.Translated Description (French)
In this paper we apply the extended hyperbolic functions method, to solve the potential Padé-II equation and the potential Benjamin-Bona-Mahony (BBM) equation.Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions and trigonometric functions.The extended hyperbolic functions method, is the used method for solving other nonlinear evalution equations.Translated Description (Spanish)
In this paper we apply the extended hyperbolic functions method, to solve the potential Padé-II equation and the potential Benjamin-Bona-Mahony (BBM) equation.Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions and trigonometric functions.The extended hyperbolic functions method, is the used method for solving other nonlinear evalution equations.Files
1.pdf.pdf
Files
(105.3 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:8a0a63022a2a1c44093da6607fa0db9a
|
105.3 kB | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- حلول الموجات المتنقلة الجديدة للمعادلات التفاضلية الجزئية غير الخطية المحتملة الجديدة
- Translated title (English)
- NEW TRAVELLING WAVE SOLUTIONS FOR NEW POTENTIAL NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
- Translated title (French)
- NEW TRAVELLING WAVE SOLUTIONS FOR NEW POTENTIAL NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
- Translated title (Spanish)
- NEW TRAVELLING WAVE SOLUTIONS FOR NEW POTENTIAL NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
Identifiers
- Other
- https://openalex.org/W2509096586
- DOI
- 10.12732/ijpam.v108i4.1
References
- https://openalex.org/W1965731591
- https://openalex.org/W1978603952
- https://openalex.org/W1991520006
- https://openalex.org/W1992580632
- https://openalex.org/W2009999606
- https://openalex.org/W2018193898
- https://openalex.org/W2028957054
- https://openalex.org/W2046828453
- https://openalex.org/W2058491746
- https://openalex.org/W2059106264
- https://openalex.org/W2061496940
- https://openalex.org/W2063853529
- https://openalex.org/W2071686965
- https://openalex.org/W2072190359
- https://openalex.org/W2081177783
- https://openalex.org/W2082096036
- https://openalex.org/W2093315683
- https://openalex.org/W2099235198
- https://openalex.org/W2110627003
- https://openalex.org/W2272118838