Published December 15, 2023 | Version v1
Publication Open

Comment on essd-2023-385

Creators

  • 1. Peking University

Description

Abstract. A high-resolution, spatially explicit forest age map is essential for quantifying forest carbon stocks and carbon sequestration potential. Prior attempts to estimate forest age on a national scale in China have been limited by sparse resolution and incomplete coverage of forest ecosystems, attributed to complex species composition, extensive forest areas, insufficient field measurements, and inadequate methods. To address these challenges, we developed a framework that combines machine learning algorithms (MLAs) and remote sensing time series analysis for estimating the age of China's forests. Initially, we identify and develop the optimal MLAs for forest age estimation across various vegetation divisions based on forest height, climate, terrain, soil, and forest-age field measurements, utilizing these MLAs to ascertain forest age information. Subsequently, we apply the LandTrendr time series analysis to detect forest disturbances from 1985 to 2020, with the time since the last disturbance serving as a proxy for forest age. Ultimately, the forest age data derived from LandTrendr are integrated with the result of MLAs to produce the 2020 forest age map of China. Validation against independent field plots yielded an R2 ranging from 0.51 to 0.63. On a national scale, the average forest age is 56.1 years (standard deviation of 32.7 years). The Qinghai–Tibet Plateau alpine vegetation zone possesses the oldest forest with an average of 138.0 years, whereas the forest in the warm temperate deciduous-broadleaf forest vegetation zone averages only 28.5 years. This 30 m-resolution forest age map offers crucial insights for comprehensively understanding the ecological benefits of China's forests and to sustainably manage China's forest resources. The map is available at https://doi.org/10.5281/zenodo.8354262 (Cheng et al., 2023a).

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

الخلاصة. تعد الخريطة العمرية للغابات عالية الدقة والصريحة مكانيًا ضرورية لقياس مخزون الكربون في الغابات وإمكانات عزل الكربون. كانت المحاولات السابقة لتقدير عمر الغابات على المستوى الوطني في الصين محدودة بسبب الدقة المتفرقة والتغطية غير الكاملة للنظم الإيكولوجية للغابات، والتي تعزى إلى تكوين الأنواع المعقدة، ومناطق الغابات الواسعة، والقياسات الميدانية غير الكافية، والأساليب غير الكافية. ولمواجهة هذه التحديات، قمنا بتطوير إطار يجمع بين خوارزميات التعلم الآلي (MLAs) وتحليل السلاسل الزمنية للاستشعار عن بعد لتقدير عمر غابات الصين. في البداية، نقوم بتحديد وتطوير المساعدات القانونية المتبادلة المثلى لتقدير عمر الغابات عبر مختلف أقسام الغطاء النباتي بناءً على ارتفاع الغابات والمناخ والتضاريس والتربة والقياسات الميدانية لعمر الغابات، باستخدام هذه المساعدات القانونية المتبادلة للتأكد من معلومات عمر الغابات. بعد ذلك، نطبق تحليل السلاسل الزمنية LandTrendr للكشف عن اضطرابات الغابات من عام 1985 إلى عام 2020، مع الوقت منذ آخر اضطراب بمثابة وكيل لعمر الغابات. في نهاية المطاف، يتم دمج بيانات عمر الغابات المستمدة من LandTrendr مع نتائج المساعدة القانونية المتبادلة لإنتاج خريطة عمر الغابات في الصين لعام 2020. أسفر التحقق من الصحة مقابل مخططات الحقول المستقلة عن R2 تتراوح من 0.51 إلى 0.63. على المستوى الوطني، يبلغ متوسط عمر الغابات 56.1 عامًا (انحراف معياري قدره 32.7 عامًا). تمتلك منطقة الغطاء النباتي في هضبة تشينغهاي- التبت الألبية أقدم غابة بمتوسط 138.0 عامًا، في حين أن الغابة في منطقة الغطاء النباتي للغابات المتساقطة المعتدلة الدافئة ذات الأوراق العريضة تحذر من 28.5 عامًا فقط. تقدم هذه الخريطة العمرية للغابات بدقة 30 م رؤى حاسمة لفهم الفوائد البيئية لغابات الصين وإدارة موارد الغابات في الصين بشكل مستدام. الخريطة متاحة على https://doi.org/10.5281/zenodo.8354262 (تشنغ وآخرون، 2023 أ).

Translated Description (English)

Abstract. A high-resolution, spatially explicit forest age map is essential for quantifying forest carbon stocks and carbon sequestration potential. Prior attempts to estimate forest age on a national scale in China have been limited by sparse resolution and incomplete coverage of forest ecosystems, attributed to complex species composition, extensive forest areas, insufficient field measurements, and inadequate methods. To address these challenges, we developed a framework that combines machine learning algorithms (MLAs) and remote sensing time series analysis for estimating the age of China's forests. Initially, we identify and develop the optimal MLAs for forest age estimation across various vegetation divisions based on forest height, climate, terrain, soil, and forest-age field measurements, using these MLAs to ascertain forest age information. Subsequently, we apply the LandTrendr time series analysis to detect forest disturbances from 1985 to 2020, with the time since the last disturbance serving as a proxy for forest age. Ultimately, the forest age data derived from LandTrendr are integrated with the result of MLAs to produce the 2020 forest age map of China. Validation against independent field plots yielded an R2 ranging from 0.51 to 0.63. On a national scale, the average forest age is 56.1 years (standard deviation of 32.7 years). The Qinghai–Tibet Alpine plateau vegetation zone possesses the oldest forest with an average of 138.0 years, whereas the forest in the warm temperate deciduous-broadleaf forest vegetation zone warnings only 28.5 years. This 30 m-resolution forest age map offers crucial insights for understanding the ecological benefits of China's forests and to sustainably manage China's forest resources. The map is available at https://doi.org/10.5281/zenodo.8354262 (Cheng et al., 2023a).

Translated Description (Spanish)

Abstract. A high-resolution, spatially explicit forest age map is essential for quantifying forest carbon stocks and carbon sequestration potential. Prior attempts to estimate forest age on a national scale in China have been limited by sparse resolution and incomplete coverage of forest ecosystems, attributed to complex species composition, extensive forest areas, insufficient field measurements, and inadequate methods. To address these challenges, we developed a framework that combines machine learning algorithms (MLAs) and remote sensing time series analysis for estimating the age of China 's forests. Initially, we identify and develop the optimal MLAs for forest age estimation across various vegetation division based on forest height, climate, terrain, soil, and forest-age field measurements, utilizing these MLAs to ascertain forest age information. Subsequently, we apply the LandTrendr time series analysis to detect forest disturbances from 1985 to 2020, with the time since the last disturbance serving as a proxy for forest age. Ultimately, the forest age data derived from LandTrendr are integrated with the result of MLAs to produce the 2020 forest age map of China. Validation against independent field plots yielded an R2 ranging from 0.51 to 0.63. On a national scale, the average forest age is 56.1 years (standard deviation of 32.7 years). The Qinghai–Tibet Plateau alpine vegetation zone possesses the oldest forest with an average of 138.0 years, whereas the forest in the warm temperate deciduous-broadleaf forest vegetation zone averages only 28.5 years. This 30 m-resolution forest age map offers crucial insights for comprehensively understanding the ecological benefits of China 's forests and to sustainably manage China' s forest resources. The map is available at https://doi.org/10.5281/zenodo.8354262 (Cheng et al., 2023a).

Files

essd-16-803-2024.pdf.pdf

Files (8.6 MB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:21b0a82d3fe8617f30fdc086dea39db4
8.6 MB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
كيفية essd -2023-385
Translated title (English)
How to essd-2023-385
Translated title (Spanish)
Cómo se essd-2023-385

Identifiers

Other
https://openalex.org/W4389762676
DOI
10.5194/essd-2023-385-ac1

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
China