Published October 9, 2016 | Version v1
Publication Open

$J$-CLASS SEMIGROUP OPERATORS

  • 1. Sidi Mohamed Ben Abdellah University

Description

A C0-semigroup T = (Tt) t≥0 on an infinite-dimensional separable complex Banach space X is called subspace-hypercyclic for a subspace M, if Orb(T , x) M is dense in M for a vector x ∈ M .In this paper, we localize the notion of M-extended semigroup(resp.M-extended semigroup mixing) limit set of x under T and We give sufficient conditions of being M -hypercyclic for this semigroup.Then by this result, we prove that (T -1 t ) t≥0 is a M -hypercyclic.This result is an answer of the question of B. F. Madore and R. A. Martnez-Avendano for C0-semigroup.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

A C0 - semigroup T = (Tt) t≥0 على مجمع قابل للفصل لانهائي الأبعاد مساحة البنك X تسمى الفضاء الفرعي - Hypercyclic للفضاء الفرعي M، إذا كان Orb(T ، x) M كثيفًا في M لمتجه x M. في هذه الورقة، نقوم بتوطين فكرة M - extended semigroup (resp.M - extended semigroup mixing) مجموعة الحد من x تحت T ونعطي شروطًا كافية لكونها M - hypercyclic لهذه المجموعة النصفية. ثم بهذه النتيجة، نثبت أن (T -1 t ) t≥0 هي M -hypercyclic. هذه النتيجة هي مسألة BF Madore و RA Martnez - Avendano لـ C0 - semigroup.

Translated Description (English)

A C0-semigroup T = (Tt) t≥0 on an infinite-dimensional separable complex Banach space X is called subspace-hypercyclic for a subspace M, if Orb(T , x) M is dense in M for a vector x ∈ M .In this paper, we localize the notion of M-extended semigroup (resp.M-extended semigroup mixing) limit set of x under T and We give sufficient conditions of being M -hypercyclic for this semigroup.Then by this result, we prove that (T -1 t ) t≥0 is a M -hypercyclic.This result is an of the question of B. F. Madore and R. A. Martnez-Avendano for C0-semigroup.

Translated Description (French)

A C0-semigroup T = (Tt) t≥0 on an infinite-dimensional separable complex Banach space X is called subspace-hypercyclic for a subspace M, if Orb(T , x) M is dense in M for a vector x $ M .In this paper, we localize the notion of M-extended semigroup (resp.M-extended semigroup mixing) limit set of x under T and We give sufficient conditions of being M -hypercyclic for this semigroup.Then by this result, we prove that (T -1 t ) t≥0 is a M -hypercyclic.This result is an answer of the question of B. Madore and R. A. Martnez-Avendano for C0-semigroup.

Translated Description (Spanish)

A C0-semigroup T = (Tt) t≥0 on an infinite-dimension separable complex Banach space X is called subspace-hypercyclic for a subspace M, if Orb(T , x) M is dense in M for a vector x 0 M .In this paper, we localize the notion of M-extended semigroup (resp.M-extended semigroup mixing) limit set of x under T and We give sufficient conditions of being M -hypercyclic for this semigroup.Then by this result, we prove that (T -1 t ) t≥0 is a M -hypercyclic.This result is an answer of the question of B. F. Madore and R. A. Martnez-Avendano for C0-semigroup.

Files

9.pdf.pdf

Files (117.6 kB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:7f527a49b585bce4d216f81478c990b6
117.6 kB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
$J$- CLASS مشغلي SEMIGROUP
Translated title (English)
$J$-CLASS SEMIGROUP OPERATORS
Translated title (French)
$J$-CLASS SEMIGROUP OPERATORS
Translated title (Spanish)
$J$-CLASS SEMIGROUP OPERATORS

Identifiers

Other
https://openalex.org/W2577011181
DOI
10.12732/ijpam.v109i4.9

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Morocco

References

  • https://openalex.org/W1527296550
  • https://openalex.org/W1543651123
  • https://openalex.org/W1594795273
  • https://openalex.org/W1981915403
  • https://openalex.org/W1992908827
  • https://openalex.org/W1998805576
  • https://openalex.org/W2011596542
  • https://openalex.org/W2021969487
  • https://openalex.org/W2075313324
  • https://openalex.org/W2520601248
  • https://openalex.org/W2784049693
  • https://openalex.org/W3037567748
  • https://openalex.org/W4300374450
  • https://openalex.org/W626893493