Published October 9, 2016
| Version v1
Publication
Open
$J$-CLASS SEMIGROUP OPERATORS
Description
A C0-semigroup T = (Tt) t≥0 on an infinite-dimensional separable complex Banach space X is called subspace-hypercyclic for a subspace M, if Orb(T , x) M is dense in M for a vector x ∈ M .In this paper, we localize the notion of M-extended semigroup(resp.M-extended semigroup mixing) limit set of x under T and We give sufficient conditions of being M -hypercyclic for this semigroup.Then by this result, we prove that (T -1 t ) t≥0 is a M -hypercyclic.This result is an answer of the question of B. F. Madore and R. A. Martnez-Avendano for C0-semigroup.
Translated Descriptions
⚠️
This is an automatic machine translation with an accuracy of 90-95%
Translated Description (Arabic)
A C0 - semigroup T = (Tt) t≥0 على مجمع قابل للفصل لانهائي الأبعاد مساحة البنك X تسمى الفضاء الفرعي - Hypercyclic للفضاء الفرعي M، إذا كان Orb(T ، x) M كثيفًا في M لمتجه x M. في هذه الورقة، نقوم بتوطين فكرة M - extended semigroup (resp.M - extended semigroup mixing) مجموعة الحد من x تحت T ونعطي شروطًا كافية لكونها M - hypercyclic لهذه المجموعة النصفية. ثم بهذه النتيجة، نثبت أن (T -1 t ) t≥0 هي M -hypercyclic. هذه النتيجة هي مسألة BF Madore و RA Martnez - Avendano لـ C0 - semigroup.Translated Description (English)
A C0-semigroup T = (Tt) t≥0 on an infinite-dimensional separable complex Banach space X is called subspace-hypercyclic for a subspace M, if Orb(T , x) M is dense in M for a vector x ∈ M .In this paper, we localize the notion of M-extended semigroup (resp.M-extended semigroup mixing) limit set of x under T and We give sufficient conditions of being M -hypercyclic for this semigroup.Then by this result, we prove that (T -1 t ) t≥0 is a M -hypercyclic.This result is an of the question of B. F. Madore and R. A. Martnez-Avendano for C0-semigroup.Translated Description (French)
A C0-semigroup T = (Tt) t≥0 on an infinite-dimensional separable complex Banach space X is called subspace-hypercyclic for a subspace M, if Orb(T , x) M is dense in M for a vector x $ M .In this paper, we localize the notion of M-extended semigroup (resp.M-extended semigroup mixing) limit set of x under T and We give sufficient conditions of being M -hypercyclic for this semigroup.Then by this result, we prove that (T -1 t ) t≥0 is a M -hypercyclic.This result is an answer of the question of B. Madore and R. A. Martnez-Avendano for C0-semigroup.Translated Description (Spanish)
A C0-semigroup T = (Tt) t≥0 on an infinite-dimension separable complex Banach space X is called subspace-hypercyclic for a subspace M, if Orb(T , x) M is dense in M for a vector x 0 M .In this paper, we localize the notion of M-extended semigroup (resp.M-extended semigroup mixing) limit set of x under T and We give sufficient conditions of being M -hypercyclic for this semigroup.Then by this result, we prove that (T -1 t ) t≥0 is a M -hypercyclic.This result is an answer of the question of B. F. Madore and R. A. Martnez-Avendano for C0-semigroup.Files
9.pdf.pdf
Files
(117.6 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:7f527a49b585bce4d216f81478c990b6
|
117.6 kB | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- $J$- CLASS مشغلي SEMIGROUP
- Translated title (English)
- $J$-CLASS SEMIGROUP OPERATORS
- Translated title (French)
- $J$-CLASS SEMIGROUP OPERATORS
- Translated title (Spanish)
- $J$-CLASS SEMIGROUP OPERATORS
Identifiers
- Other
- https://openalex.org/W2577011181
- DOI
- 10.12732/ijpam.v109i4.9
References
- https://openalex.org/W1527296550
- https://openalex.org/W1543651123
- https://openalex.org/W1594795273
- https://openalex.org/W1981915403
- https://openalex.org/W1992908827
- https://openalex.org/W1998805576
- https://openalex.org/W2011596542
- https://openalex.org/W2021969487
- https://openalex.org/W2075313324
- https://openalex.org/W2520601248
- https://openalex.org/W2784049693
- https://openalex.org/W3037567748
- https://openalex.org/W4300374450
- https://openalex.org/W626893493