Fractional generalized Burgers' fluid flow due to metachronal waves of cilia in an inclined tube
- 1. International Islamic University, Islamabad
- 2. Federal Urdu University
- 3. Pennsylvania State University
Description
In this study, the cilia-induced flow is discussed for fractional generalized Burgers' fluid in an inclined tube. The mathematical model of fractional generalized Burgers' fluid flow is obtained under the long-wavelength approximation. It is found that thickness of flow region increases with the increase in relaxation time; thus, a large amount of pressure gradient is required for fluid flow, whereas the retardation time assists to decrease the thickness of the flow region, and therefore, less amount of pressure gradient is required for the fluid flow during the recovery stroke. The presence of fractional order derivatives in the generalized Burgers' model provides the large amount of frictional force when compared with generalized Burgers' fluid in the presence of parameters α=β=1. Fractional Adomian decomposition method is used to calculate the pressure gradient. Results for stream function, axial velocity, pressure gradient, pressure rise, and frictional force are constructed and then plotted graphically to note the effects of various interesting parameters.
Translated Descriptions
Translated Description (Arabic)
في هذه الدراسة، تتم مناقشة التدفق الناجم عن الأهداب لسوائل البرغر المعممة الجزئية في أنبوب مائل. يتم الحصول على النموذج الرياضي لتدفق سائل البرجر المعمم الكسري تحت تقريب الطول الموجي الطويل. وجد أن سمك منطقة التدفق يزيد مع الزيادة في وقت الاسترخاء ؛ وبالتالي، هناك حاجة إلى كمية كبيرة من تدرج الضغط لتدفق السوائل، في حين أن وقت التخلف يساعد على تقليل سمك منطقة التدفق، وبالتالي، هناك حاجة إلى كمية أقل من تدرج الضغط لتدفق السوائل أثناء شوط الاسترداد. يوفر وجود مشتقات الترتيب الكسري في نموذج البرجر المعمم كمية كبيرة من قوة الاحتكاك عند مقارنتها بسائل البرجر المعمم في وجود المعلمات α=β=1. يتم استخدام طريقة التحليل الجزئي للأدوميان لحساب تدرج الضغط. يتم إنشاء نتائج وظيفة التيار والسرعة المحورية وتدرج الضغط وارتفاع الضغط وقوة الاحتكاك ثم يتم رسمها بيانيًا لملاحظة تأثيرات المعلمات المختلفة المثيرة للاهتمام.Translated Description (French)
Dans cette étude, l'écoulement induit par les cils est discuté pour le fluide de Burgers généralisé fractionné dans un tube incliné. Le modèle mathématique de l'écoulement de fluide généralisé fractionnaire de Burgers est obtenu sous l'approximation à grande longueur d'onde. On constate que l'épaisseur de la région d'écoulement augmente avec l'augmentation du temps de relaxation ; ainsi, une grande quantité de gradient de pression est nécessaire pour l'écoulement du fluide, tandis que le temps de retard contribue à diminuer l'épaisseur de la région d'écoulement, et par conséquent, moins de gradient de pression est nécessaire pour l'écoulement du fluide pendant la course de récupération. La présence de dérivées d'ordre fractionnaire dans le modèle de Burgers généralisé fournit la grande quantité de force de frottement par rapport au fluide de Burgers généralisé en présence de paramètres α=β=1. La méthode de décomposition adomienne fractionnaire est utilisée pour calculer le gradient de pression. Les résultats pour la fonction du flux, la vitesse axiale, le gradient de pression, l'augmentation de pression et la force de frottement sont construits puis tracés graphiquement pour noter les effets de divers paramètres intéressants.Translated Description (Spanish)
En este estudio, se discute el flujo inducido por cilios para el líquido de Burgers generalizado fraccional en un tubo inclinado. El modelo matemático de flujo de fluido de Burgers generalizado fraccional se obtiene bajo la aproximación de longitud de onda larga. Se encuentra que el grosor de la región de flujo aumenta con el aumento del tiempo de relajación; por lo tanto, se requiere una gran cantidad de gradiente de presión para el flujo de fluido, mientras que el tiempo de retardo ayuda a disminuir el grosor de la región de flujo y, por lo tanto, se requiere menos cantidad de gradiente de presión para el flujo de fluido durante la carrera de recuperación. La presencia de derivadas de orden fraccional en el modelo de Burgers generalizado proporciona la gran cantidad de fuerza de fricción en comparación con el fluido de Burgers generalizado en presencia de parámetros α=β=1. El método de descomposición fraccional de Adomian se utiliza para calcular el gradiente de presión. Los resultados para la función de la corriente, la velocidad axial, el gradiente de presión, el aumento de presión y la fuerza de fricción se construyen y luego se grafican gráficamente para observar los efectos de varios parámetros interesantes.Files
1687814017715565.pdf
Files
(15.9 kB)
| Name | Size | Download all |
|---|---|---|
|
md5:3feb102335a5ab812bdf476d0962fbc1
|
15.9 kB | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- تدفق سائل البرجر المعمم الجزئي بسبب موجات الأهداب غير المتزامنة في أنبوب مائل
- Translated title (French)
- Écoulement fractionné de fluide de Burgers généralisé dû à des ondes métachroniques de cils dans un tube incliné
- Translated title (Spanish)
- Flujo de fluido de Burgers generalizado fraccional debido a ondas metacronales de cilios en un tubo inclinado
Identifiers
- Other
- https://openalex.org/W2744743484
- DOI
- 10.1177/1687814017715565
References
- https://openalex.org/W1560556759
- https://openalex.org/W1567172441
- https://openalex.org/W1989813669
- https://openalex.org/W1993000912
- https://openalex.org/W1996837185
- https://openalex.org/W2012565765
- https://openalex.org/W2020431943
- https://openalex.org/W2025017362
- https://openalex.org/W2034790565
- https://openalex.org/W2039059203
- https://openalex.org/W2040021971
- https://openalex.org/W2057418836
- https://openalex.org/W2073947030
- https://openalex.org/W2077871331
- https://openalex.org/W2100008240
- https://openalex.org/W2104841982
- https://openalex.org/W2111600712
- https://openalex.org/W2120041114
- https://openalex.org/W2128203819
- https://openalex.org/W2154709915
- https://openalex.org/W2230915540
- https://openalex.org/W2345618614
- https://openalex.org/W2415379020
- https://openalex.org/W2512570354
- https://openalex.org/W2592443346
- https://openalex.org/W2963071772
- https://openalex.org/W4244336586
- https://openalex.org/W4301223505