Published November 17, 2023 | Version v1
Publication Open

Effects of quantum decoherence in a future supernova neutrino detection

  • 1. Universidade Estadual de Campinas (UNICAMP)
  • 2. Niels Brock
  • 3. University of Copenhagen
  • 4. Gran Sasso Science Institute

Description

Quantum decoherence effects in neutrinos, described by the open quantum systems formalism, serve as a gateway to explore potential new physics, including quantum gravity. Previous research extensively investigated these effects across various neutrino sources, imposing stringent constraints on the spontaneous loss of coherence. In this study, we demonstrate that even within the supernovae environment, where neutrinos are released as incoherent states, quantum decoherence could influence the flavor equipartition of $3\ensuremath{\nu}$ mixing. Additionally, we examine the potential energy dependence of quantum decoherence parameters ($\mathrm{\ensuremath{\Gamma}}={\mathrm{\ensuremath{\Gamma}}}_{0}(E/{E}_{0}{)}^{n}$) with different power laws ($n=0,2,5/2$). Our findings indicate that future-generation detectors (DUNE, Hyper-K, and JUNO) can significantly constrain quantum decoherence effects under different scenarios. For a supernova located 10 kpc away from Earth, if no quantum decoherence is observed, DUNE could potentially establish $3\ensuremath{\sigma}$ bounds of $\mathrm{\ensuremath{\Gamma}}\ensuremath{\le}6.2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}14}\text{ }\text{ }\mathrm{eV}$ in the normal mass hierarchy (NH) scenario, while Hyper-K would impose a $2\ensuremath{\sigma}$ limit of $\mathrm{\ensuremath{\Gamma}}\ensuremath{\le}3.6\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}14}\text{ }\text{ }\mathrm{eV}$ for the inverted mass hierarchy (IH) with $n=0$---assuming no energy exchange between the neutrino subsystem and nonstandard environment. These limits become even more restrictive for a closer supernova. When we relax the assumption of energy exchange, for a 10 kpc distance, DUNE could establish a $3\ensuremath{\sigma}$ limit of ${\mathrm{\ensuremath{\Gamma}}}_{8}\ensuremath{\le}4.2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}28}\text{ }\text{ }\mathrm{eV}$ for NH, while Hyper-K could constrain ${\mathrm{\ensuremath{\Gamma}}}_{8}\ensuremath{\le}1.3\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}27}\text{ }\text{ }\mathrm{eV}$ for IH ($n=0$) with $2\ensuremath{\sigma}$, which would be orders of magnitude stronger than the bounds reported to date. Furthermore, we examine the impact of neutrino loss during propagation for future supernova detection.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

تعمل تأثيرات فك الترابط الكمومي في النيوترونات، التي وصفتها شكليات الأنظمة الكمومية المفتوحة، كبوابة لاستكشاف الفيزياء الجديدة المحتملة، بما في ذلك الجاذبية الكمومية. بحثت الأبحاث السابقة على نطاق واسع في هذه التأثيرات عبر مصادر النيوترينو المختلفة، وفرضت قيودًا صارمة على الفقدان التلقائي للتماسك. في هذه الدراسة، نوضح أنه حتى داخل بيئة المستعرات العظمى، حيث يتم إطلاق النيوترونات كحالات غير متماسكة، يمكن أن يؤثر فك الترابط الكمومي على تقسيم النكهة لخلط $3\ensuremath {\nu }$. بالإضافة إلى ذلك، ندرس اعتماد الطاقة المحتملة لمعلمات فك الترابط الكمومي ($\ mathrm {\ ensuremath {\ Gamma }}={\mathrm {\ ensuremath {\Gamma }}}_{ 0 }( E /{ E }_{ 0 }{ )}^{ n }$) مع قوانين قوة مختلفة ($n= 0,2,5/2$). تشير النتائج التي توصلنا إليها إلى أن كاشفات الجيل المستقبلي (الكثبان الرملية، Hyper - K، و JUNO) يمكن أن تقيد بشكل كبير تأثيرات فك الترابط الكمومي في ظل سيناريوهات مختلفة. بالنسبة للمستعر الأعظم الذي يقع على بعد 10 كيلو بيكسل من الأرض، إذا لم يلاحظ أي تفكك كمي، فمن المحتمل أن ينشئ الكثبان الرملية 3 دولارات\ ensuremath {\ sigma} حدودًا بقيمة $\ mathrm {\ ensuremath {\ gamma}}\ ensuremath {\ ifmmode\ times\ else\ texttimes\ fi {} {10 }^{\ ensuremath {-} 14}\text {}\mathrm{eV }$ في سيناريو التسلسل الهرمي الكتلي العادي (NH)، في حين أن Hyper - K سيفرض حدًا بقيمة $2\ ensuremath {\ sigma }$ بقيمة $\ mathrm {\ ensuremath {\ Gamma}}\ ensuremath {\ le}3.6\ ifmmode\ times\ else\ texttimes\ fi{10 }^{\ ensuremath {-} 14}\text {\ math {V }$ للتسلسل الهر الكتلي المائل (IH) = $ 0 -- تبادل الطاقة بدون كتلة بين النظام الفرعي والبيئة غير القياسية. تصبح هذه الحدود أكثر تقييدًا عند اقتراب المستعر الأعظم. عندما نسترخي في افتراض تبادل الطاقة، لمسافة 10 كيلو فرسخ فلكي، يمكن للكثبان الرملية إنشاء حد $3\ ensuremath {\ sigma }$ بقيمة ${\ ensuremath {\Gamma }}}_{ 8}\ ensuremath {\ le}4.2\ ifmmode\times\else\ texttimes\fi {}{10 }^{ 10 }^{\ ensuremath {-} 28}\ text {}\ mathrm{eV }$ لـ NH، بينما يمكن لـ Hyper - K تقييد ${\ mathrm {\ ensuremath {\ Gamma }}}_{ 8}\ ensuremath {\ le}1.3\ ifmmode\ times\ else\ texttimes\fi {}{10 }^{\ ensuremath {-} 27}\text {}\ mathrm{eV }$ لـ IH ($ n=0 $) بـ $2\ ensuremath {\ sigma }$، والتي ستكون ذات حجم أكبر من الأصوات الأقوى التي تم الإبلاغ عنها حتى الآن. علاوة على ذلك، ندرس تأثير فقدان النيوترينو أثناء الانتشار للكشف عن السوبرنوفا في المستقبل.

Translated Description (English)

Quantum decoherence effects in neutrinos, described by the open quantum systems formalism, serve as a gateway to explore potential new physics, including quantum gravity. Previous research extensively investigated these effects across various neutrino sources, imposing stringent constraints on the spontaneous loss of coherence. In this study, we demonstrate that even within the supernovae environment, where neutrinos are released as incoherent states, quantum decoherence could influence the flavor equipartition of $3\ensuremath{\nu}$ mixing. Additionally, we examine the potential energy dependence of quantum decoherence parameters ($\mathrm{\ ensuremath {\Gamma}}={\mathrm{\ ensuremath {\Gamma}}}_{0}(E/{E}_{0}{)}^{n}$) with different power laws ($n=0,2,5/2$). Our findings indicate that future-generation detectors (DUNE, Hyper-K, and JUNO) can significantly constrain quantum decoherence effects under different scenarios. For a supernova located 10 kpc away from Earth, if no quantum decoherence is observed, DUNE could potentially establish $3\ ensuremath {\sigma}$ bounds of $\mathrm{\ ensuremath {\Gamma}}\ ensuremath {\le}6.2\ ifmmode\times\else\ texttimes\fi{}{10}^{\ ensuremath {-}14}\text{ }\text{ }\mathrm{eV}$ in the normal mass hierarchy (NH) scenario, while Hyper-K would impose a $2\ ensuremath {\sigma}$ limit of $\mathrm{\ ensuremath {\Gamma}}\ ensuremath {\le}3.6\ ifmmode\times\else\ texttimes\fi{}{10}^{\ ensuremath {-}14}\text{ }\text{ }\mathrm{eV}$ for the inverted mass hierarchy (IH) with $n=0$ ---assuming no energy exchange between the neutrino subsystem and nonstandard environment. These limits become even more restrictive for a closer supernova. When we relax the assumption of energy exchange, for a 10 kpc distance, DUNE could establish a $3\ ensuremath {\sigma}$ limit of ${\ ensuremath {\Gamma}}}_{8}\ ensuremath {\ le}4.2\ ifmmode\ times\ else\ texttimes\fi{}{10}^{\ ensuremath {-}28}\text{ }\text{ }\mathrm{eV}$ for NH, while Hyper-K could constrain ${\mathrm{\ ensuremath {\Gamma}}}_{8}\ ensuremath {\le}1.3\ ifmmode\ times\ else\ texttimes\fi{}{10}^{\ ensuremath {-}27}\text{ }\text{ }\mathrm{eV}$ for IH ($n=0$) with $2\ ensuremath {\sigma}$, which would be orders of magnitude stronger than the bounds reported to date. Furthermore, we examine the impact of neutrino loss during propagation for future supernova detection.

Translated Description (Spanish)

Quantum decoherence effects in neutrinos, described by the open quantum systems formalism, serve as a gateway to explore potential new physics, including quantum gravity. Previous research extensively investigated these effects across various neutrino sources, imposing stringent constraints on the spontaneous loss of coherence. In this study, we demonstrate that even within the supernovae environment, where neutrinos are released as incoherent states, quantum decoherence could influence the flavor equipartition of $3\ensuremath{\nu}$ mixing. Additionally, we examine the potential energy dependence of quantum decoherence parameters ($\mathrm{\ ensuremath {\Gamma}}={\mathrm{\ ensuremath {\Gamma}}}_{0}(E/{E}_{0}{)}^{n}$) with different power laws ($n= 0,2,5/2$). Our findings indicate that future-generation detectors (DUNE, Hyper-K, and JUNO) can significantly constrain quantum decoherence effects under different scenarios. For a supernova located 10 kpc away from Earth, if no quantum decoherence is observed, DUNE could potentially establish $3\ ensuremath {\ sigma} $ bounds of $\ mathrm {\ ensuremath {\ Gamma}}\ ensuremath {\ le} 6.2\ ifmmode\ times\ else\ texttimes\ fi {} {10} ^ {\ ensuremath {-} 14}\ text {}\ text {\ text {}\ text {}\ mathrm {eV} $ in the normal mass hierarchy (NH) scenario, while Hyper-K would obligation a $ 2\ ensuremath {\ sigma} $ limit of $\mathrm{\ ensuremath {\ Gamma}}\ ensuremath {\ le}\ ensuremath {\ le} 3.6\ ifmode\ times\ else\ texttimes\ fi {} {10} ^ {\\ ensuremath {14}} {text {\ text {\ text}} {\ text {\ text {\ text}} {\ text {\ text {\ text}} {\ text {\ text}} {\ text {\ text {\ text} {\text}} {\ inversted the massarchy (IH) {0 $ with = energy = $ -- energy_name = $ 0_nameter_nameter_nameter_nameter_nameter_nameter_nameter_nameter_nameter_nameter_nameter_nameter_nameter_nameter_name These limits become even more restrictive for a closer supernova. When we relax the assmption of energy exchange, for a 10 kpc distance, DUNE could establish a $3\ ensuremath {-} 28}$ limit of ${\mathrm{\ ensuremath {\Gamma}}_{8}\ ensuremath {\ le}4.2\ ifmmode\ times\ else\ texttimes\fi{} {10}^ {\ ensuremath {-}28}\ text {}\text{ }\ mathrm { }\mathrm{eV}$ for NH, while Hyper-K could constrain ${\mathrm{\ ensuremath {\Gamma}}}_{8}\ ensuremath {\ le}1.3\ ifmmode\times\else\ texttimes\fi{}{10}^{\ ensuremath {-}27}\text{\ text {\text{\ text}\mathrm{eV}} for $ IH ($ 0 = $ nith 2\ ensuremath {sighma}, wich would the beord of the ordent of the bounders to the bounders to date. Furthermore, we examina the impact of neutrino loss during propagation for future supernova detection.

Files

PhysRevD.108.103032.pdf

Files (2.6 MB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:c76b90e08e94e7d75635528f2b4f7dcf
2.6 MB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
آثار تفكك الترابط الكمومي في الكشف المستقبلي عن نيوترينو المستعر الأعظم
Translated title (English)
Effects of quantum decoherence in a future supernova neutrino detection
Translated title (Spanish)
Effects of quantum decoherence in a future supernova neutrino detection

Identifiers

Other
https://openalex.org/W4388753259
DOI
10.1103/physrevd.108.103032

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Brazil

References

  • https://openalex.org/W1516585726
  • https://openalex.org/W1538607737
  • https://openalex.org/W1627099272
  • https://openalex.org/W1673947534
  • https://openalex.org/W1927325176
  • https://openalex.org/W1973621302
  • https://openalex.org/W1978398961
  • https://openalex.org/W1997264230
  • https://openalex.org/W1997461347
  • https://openalex.org/W2013467871
  • https://openalex.org/W2015683881
  • https://openalex.org/W2018621138
  • https://openalex.org/W2027712212
  • https://openalex.org/W2032839191
  • https://openalex.org/W2041160596
  • https://openalex.org/W2041585515
  • https://openalex.org/W2062603918
  • https://openalex.org/W2073988099
  • https://openalex.org/W2086250031
  • https://openalex.org/W2087366854
  • https://openalex.org/W2101654452
  • https://openalex.org/W2113933165
  • https://openalex.org/W2116969607
  • https://openalex.org/W2124121663
  • https://openalex.org/W2300361610
  • https://openalex.org/W2585097439
  • https://openalex.org/W2589168371
  • https://openalex.org/W2611346121
  • https://openalex.org/W2616474226
  • https://openalex.org/W2749272257
  • https://openalex.org/W2804337549
  • https://openalex.org/W2900747701
  • https://openalex.org/W2901435388
  • https://openalex.org/W2952353412
  • https://openalex.org/W2964181486
  • https://openalex.org/W2976012760
  • https://openalex.org/W2979254522
  • https://openalex.org/W2996116318
  • https://openalex.org/W3008834602
  • https://openalex.org/W3039530634
  • https://openalex.org/W3080803408
  • https://openalex.org/W3098705018
  • https://openalex.org/W3098920658
  • https://openalex.org/W3104121279
  • https://openalex.org/W3122301290
  • https://openalex.org/W3123973633
  • https://openalex.org/W3136514254
  • https://openalex.org/W3151133604
  • https://openalex.org/W3162082128
  • https://openalex.org/W3171252537
  • https://openalex.org/W3198859384
  • https://openalex.org/W3209364943
  • https://openalex.org/W4205092497
  • https://openalex.org/W4224997213
  • https://openalex.org/W4295693918
  • https://openalex.org/W4306758272
  • https://openalex.org/W4309637412
  • https://openalex.org/W4379230308
  • https://openalex.org/W4386806547