APPLICATION OF MULTISTEP REPRODUCING KERNEL HILBERT SPACE METHOD FOR SOLVING GIVING UP SMOKING MODEL
Creators
- 1. Princess Sumaya University for Technology
- 2. University of Jordan
Description
Smoking is the leading avoidable cause of death in the world.In this paper, we apply the Reproducing Kernel Hilbert Space method on the giving up smoking model to find an approximate solution of the model then we compare it with the fourth order Runge-Kutta method.The solutions are represented in the form of series in the Hilbert space W 2 2 [a, b] with easily computable components.In finding the computational solutions, we use generating the orthogonal basis from the obtained kernel functions such that the orthonormal basis is constructing in order to formulate and utilize the solutions.Numerical experiments are carried where two smooth reproducing kernel functions are used throughout the evolution of the algorithm to obtain the required nodal values of the unknown variables.The utilized graphical results show that the present algorithm and simulated annealing provide a good scheduling methodology to such model.
Translated Descriptions
Translated Description (Arabic)
التدخين هو السبب الرئيسي للوفاة الذي يمكن تجنبه في العالم. في هذه الورقة، نطبق طريقة إعادة إنتاج نواة هيلبرت سبيس على نموذج الإقلاع عن التدخين لإيجاد حل تقريبي للنموذج ثم نقارنه مع طريقة رونج كوتا من الدرجة الرابعة. يتم تمثيل الحلول في شكل سلسلة في فضاء هيلبرت W 2 2 [أ، ب] مع مكونات قابلة للحساب بسهولة. في العثور على الحلول الحسابية، نستخدم توليد الأساس المتعامد من وظائف النواة التي تم الحصول عليها بحيث يتم بناء الأساس المتعامد من أجل صياغة واستخدام الحلول. يتم إجراء تجارب رقمية حيث يتم استخدام وظيفتين سلستين لإعادة إنتاج النواة طوال تطور الخوارزمية للحصول على القيم العقدية المطلوبة للمتغيرات غير المعروفة. تظهر النتائج البيانية المستخدمة أن الخوارزمية الحالية ومحاكاة التلدين توفر منهجية جدولة جيدة لهذا النموذج.Translated Description (English)
Smoking is the leading avoidable cause of death in the world.In this paper, we apply the Reproducing Kernel Hilbert Space method on the giving up smoking model to find an approximate solution of the model then we compare it with the fourth order Runge-Kutta method.The solutions are represented in the form of series in the Hilbert space W 2 2 [a, b] with easily computable components.In finding the computational solutions, we use generating the orthogonal basis from the obtained kernel functions such that the orthonormal basis is constructing in order to formulate and utilize the solutions.Numerical experiments are carried out where two smooth reproducing kernel functions are used throughout the evolution of the algorithm to obtain the required nodal values of the unknown variables.The utilized graphical results show that the present algorithm and simulated annealing provide a good scheduling methodology to such model.Translated Description (French)
Smoking is the leading avoidable cause of death in the world.In this paper, we apply the Reproducing Kernel Hilbert Space method on the giving up smoking model to find an approximate solution of the model then we compare it with the fourth order Runge-Kutta method.The solutions are represented in the form of series in the Hilbert space W 2 [a, b] with easily computable components.In finding the computational solutions, we use generating the orthogonal basis from the obtained kernel functions such that the orthonormal basis is constructing in order to formulate and utilize the solutions.Numerical experiments are carried where two smooth reproducing kernel functions are used throughout the evolution of the algorithm to ob the required nodal values of the known.The utilized graphical results that present algorithm and simulated proving a good model.Translated Description (Spanish)
Smoking is the leading avoidable cause of death in the world.In this paper, we apply the Reproducing Kernel Hilbert Space method on the giving up smoking model to find an approximate solution of the model then we compare it with the fourth order Runge-Kutta method.The solutions are represented in the form of series in the Hilbert space W 2 2 [a, b] with easily computable components.In finding the computational solutions, we use generating the orthogonal basis from the obtained kernel functions such that the orthonormal basis is constructing in order to formulate and utilize the solutions.Numerical experiments are carried where two smooth reproducing kernel kernel functions used throughout the required the valued nod nod nodno of the variabilities used the required of the required algorithm to required the valued nod nod to the variations that the unking used the unked used the solutions.Files
11.pdf.pdf
Files
(148.8 kB)
Name | Size | Download all |
---|---|---|
md5:76e6eb148899309e74d40d868feedb7b
|
148.8 kB | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- تطبيق MULTISTEP إعادة إنتاج KERNEL HILBERT SPACE METHOD لحل نموذج الإقلاع عن التدخين
- Translated title (English)
- APPLICATION OF MULTISTEP REPRODUCING KERNEL HILBERT SPACE METHOD FOR SOLVING GIVING UP SMOKING MODEL
- Translated title (French)
- APPLICATION OF MULTISTEP REPRODUCING KERNEL HILBERT SPACE METHOD FOR SOLVING GIVING UP SMOKING MODEL
- Translated title (Spanish)
- APPLICATION OF MULTISTEP REPRODUCING KERNEL HILBERT SPACE METHOD FOR SOLVING GIVING UP SMOKING MODEL
Identifiers
- Other
- https://openalex.org/W2524836448
- DOI
- 10.12732/ijpam.v109i2.11
References
- https://openalex.org/W1491820156
- https://openalex.org/W1986280275
- https://openalex.org/W1999279996
- https://openalex.org/W2015597220
- https://openalex.org/W2112654716