Published January 1, 2023 | Version v1
Publication

Universal potential estimates for $ 1 < p\leq 2-\frac{1}{n} $

  • 1. Academy of Mathematics and Systems Science
  • 2. Chinese Academy of Sciences
  • 3. Louisiana State University

Description

We extend the so-called universal potential estimates of Kuusi-Mingione type (J. Funct. Anal. 262: 4205–4269, 2012) to the singular case $ 1 < p\leq 2-1/n $ for the quasilinear equation with measure data

\begin{document}$ \begin{equation*} -\operatorname{div}(A(x,\nabla u)) = \mu \end{equation*} $\end{document}

in a bounded open subset $ \Omega $ of $ \mathbb{R}^n $, $ n\geq 2 $, with a finite signed measure $ \mu $ in $ \Omega $. The operator $ \operatorname{div}(A(x, \nabla u)) $ is modeled after the $ p $-Laplacian $ \Delta_p u: = {\rm div}\, (|\nabla u|^{p-2}\nabla u) $, where the nonlinearity $ A(x, \xi) $ ($ x, \xi \in \mathbb{R}^n $) is assumed to satisfy natural growth and monotonicity conditions of order $ p $, as well as certain additional regularity conditions in the $ x $-variable.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

<الملخص>

نحن نمدد ما يسمى بالتقديرات المحتملة العالمية لنوع Kuusi - Mingione (J. Funct. Anal. 262: 4205-4269, 2012) إلى الحالة المفردة $ 1 < p\leq 2-1/n $ للمعادلة شبه الخطية مع بيانات القياس

< p >< disp - formula >< label />< tex - math id=" FE1 ">\ begin{document }$\ begin{equation *}-\ operatorname{div }( A(x,\nabla u ))=\mu \end{equation *}$\ end{document }</ tex - math ></ disp - formula >

في مجموعة فرعية مفتوحة محدودة $\Omega $ من $\ mathbb{R}^n $, $ n\geq 2 $, مع تدبير موقّع محدود $\mu $ في $\Omega $. تم تصميم المشغل $\operatorname{div}(A(x, \nabla u ))$ على غرار $ p $- Laplacian $\Delta_p u :={\ rm div}\, (|\ nabla u|^{ p -2}\nabla u )$, حيث يفترض أن اللاخطية $ A(x, \xi) $($ x, \xi\ in \mathbb{R }^n $) تفي بالنمو الطبيعي وظروف الرتابة للطلب $ p $, بالإضافة إلى بعض شروط الانتظام الإضافية في $ x $- variable.</ abstract>

Translated Description (English)

We extend the so-called universal potential estimates of Kuusi-Mingione type (J. Funct. Anal. 262: 4205-4269, 2012) to the singular case $1 < p\leq 2-1/n $ for the quasilinear equation with measure data

< disp-formula > < tex-math id="FE1"> \begin{document}$ \begin{equation*} -\operatorname{div}(A(x,\nabla u)) = \mu \end{equation*} $\end{document}

in a bounded open subset $ \Omega $ of $ \mathbb{R}^n $, $ n\geq 2$, with a finite signed measure $ \mu $ in $ \Omega $. The operator $ \operatorname{div}(A(x, \nabla u)) $ is modeled after the $ p $ -Laplacian $ \Delta_p u: = {\rm div}\, (|\nabla u|^{p-2}\nabla u) $, where the nonlinearity $ A(x, \xi) $ ($ x, \xi \in \mathbb{R}^n $) is assumed to satisfy natural growth and monotonicity conditions of order $ p $, as well as certain additional regularity conditions in the $ x $ -variable.

Translated Description (French)

Nous étendons les estimations de potentiel dites universelles de type Kuusi-Mingione (J. Funct. Anal. 262: 4205-4269, 2012) au cas singulier $ 1 < p\leq 2-1/n $ pour l'équation quasilinéaire avec les données de mesure

< disp-formula > < tex-math id="FE1"> \begin{document}$ \begin{equation*} -\operatorname{div}(A(x,\nabla u)) = \mu \end{equation*} $ \end{document}

dans un sous-ensemble ouvert borné $ \Omega $ de $ \mathbb{R}^n $ , $ n\geq 2 $ , avec une mesure finie signée $ \mu $ en $ \Omega $ . L'opérateur $ \operatorname{div}(A(x, \nabla u)) $ est modélisé d'après le $ p $ -Laplacian $ \Delta_p u : = {\rm div}\, (|\nabla u|^{p-2}\nabla u) $ , où la non-linéarité $ A(x, \xi) $ ( $ x, \xi\ in \mathbb{R}^n $ ) est supposée satisfaire aux conditions de croissance naturelle et de monotonie d'ordre $ p $ , ainsi qu'à certaines conditions de régularité supplémentaires dans la variable $ x $ .

Translated Description (Spanish)

Extendemos las llamadas estimaciones de potencial universal del tipo Kuusi-Mingione (J. Funct. Anal. 262: 4205-4269, 2012) al caso singular $ 1 < p\leq 2-1/n $ para la ecuación cuasilineal con datos de medida

< disp-formula > < tex-math id="FE1"> \begin{document}$ \begin{equation*} -\operatorname{div}(A(x,\nabla u)) = \mu \end{equation*} $\end{document}

en un subconjunto abierto delimitado $ \Omega $ de $ \mathbb{R}^n $, $ n\geq 2 $, con una medida firmada finita $ \mu $ en $ \Omega $. El operador $ \operatorname{div}(A(x, \nabla u)) $ se modela después del $ p $ -Laplaciano $ \Delta_p u: = {\rm div}\, (|\nabla u|^{p-2}\nabla u) $, donde se supone que la no linealidad $ A(x, \xi) $ ($ x, \xi\ in \mathbb{R}^n $) satisface las condiciones de crecimiento natural y monotonicidad de orden $ p $, así como ciertas condiciones de regularidad adicionales en el $ x $ -variable.

Additional details

Additional titles

Translated title (Arabic)
تقديرات الإمكانات العالمية لـ $ 1 < p\leq 2 -\frac{1 }{ n }$
Translated title (English)
Universal potential estimates for $1 < p\leq 2-\frac{1}{n} $
Translated title (French)
Estimations du potentiel universel pour $ 1 < p\leq 2-\frac{1}{n} $
Translated title (Spanish)
Estimaciones de potencial universal para $ 1 < p\leq 2-\frac{1}{n} $

Identifiers

Other
https://openalex.org/W4313511088
DOI
10.3934/mine.2023057

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
China

References

  • https://openalex.org/W1504810697
  • https://openalex.org/W1964968127
  • https://openalex.org/W2012063459
  • https://openalex.org/W2018604712
  • https://openalex.org/W2025854194
  • https://openalex.org/W2035163028
  • https://openalex.org/W2061347525
  • https://openalex.org/W2064043277
  • https://openalex.org/W2092609535
  • https://openalex.org/W2127355849
  • https://openalex.org/W2882987372
  • https://openalex.org/W2984499031
  • https://openalex.org/W3210142339