Published June 29, 2018 | Version v1
Publication Open

EXAMINING ASSOCIATION BETWEEN CONSTRUCTION INSPECTION GRADES AND CRITICAL DEFECTS USING DATA MINING AND FUZZY LOGIC

  • 1. University of Science and Technology

Description

This paper explores the relations between defect types and quality inspection grades of public construction projects in Taiwan. Altogether, 499 defect types (classified from 17,648 defects) were found after analyzing 990 construction projects from the Public Construction Management Information System of the public construction commission which is a government unit that administers all the public construction. The core of this research includes the following steps. (1) Data mining (DM) was used to derive 57 association rules which altogether contain 30 of the 499 defect types. (2) K-means clustering was used to regroup the 990 projects of two attributes (defect frequency and original grading score of each project) into four new quality classes, so the 990 projects can be more evenly distributed in the four new classes and the correctness and reliability of the following analyses can be ensured. (3) Finally analysis of variance (ANOVA), fuzzy logic, and correlation analysis were used to verify that the aforementioned 30 defect types are the important ones determining inspection grades. Results of this research can help stakeholders of construction projects paying more attention on the root causes of the critical defect types so to dramatically raise their management effectiveness.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

تستكشف هذه الورقة العلاقات بين أنواع العيوب ودرجات فحص الجودة لمشاريع البناء العامة في تايوان. إجمالاً، تم العثور على 499 نوعًا من العيوب (مصنفة من 17648 عيبًا) بعد تحليل 990 مشروعًا إنشائيًا من نظام معلومات إدارة الإنشاءات العامة التابع للجنة الإنشاءات العامة وهي وحدة حكومية تدير جميع الإنشاءات العامة. يتضمن جوهر هذا البحث الخطوات التالية. (1) تم استخدام استخراج البيانات (DM) لاشتقاق 57 قاعدة ارتباط تحتوي جميعها على 30 نوعًا من أنواع العيوب البالغ عددها 499 نوعًا. (2) تم استخدام التجميع K - means لإعادة تجميع 990 مشروعًا من سمتين (تكرار العيب ودرجة الدرجات الأصلية لكل مشروع) في أربع فئات جودة جديدة، لذلك يمكن توزيع 990 مشروعًا بالتساوي في الفئات الأربع الجديدة ويمكن ضمان صحة وموثوقية التحليلات التالية. (3) تم أخيرًا استخدام تحليل التباين (ANOVA) والمنطق الغامض وتحليل الارتباط للتحقق من أن أنواع العيوب الثلاثين المذكورة أعلاه هي الأنواع المهمة التي تحدد درجات الفحص. يمكن أن تساعد نتائج هذا البحث أصحاب المصلحة في مشاريع البناء على إيلاء المزيد من الاهتمام للأسباب الجذرية لأنواع العيوب الحرجة من أجل زيادة فعالية إدارتها بشكل كبير.

Translated Description (English)

This paper explores the relations between defect types and quality inspection grades of public construction projects in Taiwan. Altogether, 499 defect types (classified from 17,648 defects) were found after analyzing 990 construction projects from the Public Construction Management Information System of the public construction commission which is a government unit that administers all the public construction. The core of this research includes the following steps. (1) Data mining (DM) was used to derive 57 association rules which altogether contain 30 of the 499 defect types. (2) K-means clustering was used to regroup the 990 projects of two attributes (defect frequency and original grading score of each project) into four new quality classes, so the 990 projects can be more evenly distributed in the four new classes and the correctness and reliability of the following analyses can be ensured. (3) Finally analysis of variance (ANOVA), fuzzy logic, and correlation analysis were used to verify that the aforementioned 30 defect types are the important ones determining inspection grades. Results of this research can help stakeholders of construction projects paying more attention to the root causes of the critical defect types so as to dramatically raise their management effectiveness.

Translated Description (French)

Ce document explore les relations entre les types de défauts et les degrés d'inspection de la qualité des projets de construction publique à Taiwan. Altogether, 499 defect types (classified from 17,648 defects) were found after analyzing 990 construction projects from the Public Construction Management Information System of the public construction commission which is a government unit that administers all the public construction. Le cœur de cette recherche comprend les étapes suivantes. (1) Data mining (DM) was used to derive 57 association rules which altogether contain 30 of the 499 defect types. (2) K-means clustering was used to regroup the 990 projects of two attributes (defect frequency and original grading score of each project) into four new quality classes, so the 990 projects can be more evenly distributed in the four new classes and the correctness and reliability of the following analyses can be ensured. (3) Finally analysis of variance (ANOVA), fuzzy logic, and correlation analysis were used to verify that the aforementioned 30 defect types are the important ones determining inspection grades. Results of this research can help stakeholders of construction projects paying more attention on the root causes of the critical defect types so to dramatically raise their management effectiveness.

Translated Description (Spanish)

Este artículo explora las relaciones entre los tipos de defectos y los grados de inspección de calidad de los proyectos de construcción pública en Taiwán. Altogether, 499 defect types (classified from 17,648 defects) were found after analyzing 990 construction projects from the Public Construction Management Information System of the public construction commission which is a government unit that administers all the public construction. The core of this research includes the following steps. (1) Data mining (DM) was used to derive 57 association rules which altogether contain 30 of the 499 defect types. (2) K-means clustering was used to regroup the 990 projects of two attributes (defect frequency and original grading score of each project) into four new quality classes, so the 990 projects can be more evenly distributed in the four new classes and the correctness and reliability of the following analyses can be ensured. (3) Finally analysis of variance (ANOVA), fuzzy logic, and correlation analysis were used to verify that the aforementioned 30 defect types are the important ones determining inspection grades. Results of this research can help stakeholders of construction projects paying more attention on the root causes of the critical defect types so to dramatically raise their management effectiveness.

Files

2546.pdf

Files (1.0 MB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:fca8d832b5f937a3b158caa483cacfa3
1.0 MB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
فحص الارتباط بين درجات فحص البناء والعيوب الحرجة باستخدام استخراج البيانات والمنطق الغامض
Translated title (English)
EXAMINING ASSOCIATION BETWEEN CONSTRUCTION INSPECTION GRADES AND CRITICAL DEFECTS USING DATA MINING AND FUZZY LOGIC
Translated title (French)
EXAMINING ASSOCIATION BETWEEN CONSTRUCTION INSPECTION GRADES AND CRITICAL DEFECTS USING DATA MINING AND FUZZY LOGIC
Translated title (Spanish)
EXAMINING ASSOCIATION BETWEEN CONSTRUCTION INSPECTION GRADES AND CRITICAL DEFECTS USING DATA MINING AND FUZZY LOGIC

Identifiers

Other
https://openalex.org/W2810804017
DOI
10.3846/jcem.2018.3072

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Yemen

References

  • https://openalex.org/W1564735365
  • https://openalex.org/W1565050238
  • https://openalex.org/W1574251922
  • https://openalex.org/W1862952679
  • https://openalex.org/W1955600018
  • https://openalex.org/W1963490691
  • https://openalex.org/W1965301525
  • https://openalex.org/W1969309779
  • https://openalex.org/W1969836645
  • https://openalex.org/W1973668795
  • https://openalex.org/W1974518327
  • https://openalex.org/W1983512190
  • https://openalex.org/W1984448332
  • https://openalex.org/W1989828262
  • https://openalex.org/W1990521594
  • https://openalex.org/W2002830978
  • https://openalex.org/W2012955764
  • https://openalex.org/W2013155846
  • https://openalex.org/W2015477572
  • https://openalex.org/W2018075584
  • https://openalex.org/W2020910530
  • https://openalex.org/W2022261372
  • https://openalex.org/W2022347145
  • https://openalex.org/W2026066987
  • https://openalex.org/W2039288204
  • https://openalex.org/W2041084180
  • https://openalex.org/W2047245520
  • https://openalex.org/W2048779798
  • https://openalex.org/W2049343907
  • https://openalex.org/W2057843111
  • https://openalex.org/W2061917815
  • https://openalex.org/W2062690987
  • https://openalex.org/W2064321042
  • https://openalex.org/W2067901548
  • https://openalex.org/W2070802104
  • https://openalex.org/W2075028294
  • https://openalex.org/W2082807560
  • https://openalex.org/W2093421556
  • https://openalex.org/W2096768134
  • https://openalex.org/W2099404336
  • https://openalex.org/W2110437827
  • https://openalex.org/W2110673691
  • https://openalex.org/W2112307926
  • https://openalex.org/W2140190241
  • https://openalex.org/W2140694235
  • https://openalex.org/W2143540236
  • https://openalex.org/W2143853009
  • https://openalex.org/W2154800226
  • https://openalex.org/W2160311168
  • https://openalex.org/W2166412668
  • https://openalex.org/W2171612826
  • https://openalex.org/W2472965100
  • https://openalex.org/W2481003398
  • https://openalex.org/W2496253420
  • https://openalex.org/W2529869727
  • https://openalex.org/W2600747262
  • https://openalex.org/W2787894218
  • https://openalex.org/W2913593077
  • https://openalex.org/W3193532866
  • https://openalex.org/W4211007335
  • https://openalex.org/W4244996076
  • https://openalex.org/W4252403066