Published November 6, 2012 | Version v1
Publication Open

CUTTING TOOL WEAR PREDICTION BY USING THE GROUP METHOD OF DATA HANDLING (GMDH)

  • 1. University of Abou Bekr Belkaïd
  • 2. École Nationale Polytechnique d'Oran

Description

In machining area, the use of conventional approach to develop a reliable method predicting tool wear with a mathematical model based on the plastic deformation of the work material cannot always deal to satisfactory results. Sometimes the conventional model gives rather large prediction errors by the disturbance into the cutting process. This paper deals with the prediction of the tool flank wear in a turning operation using the powerful technique called Group Method of data Handling (GMDH). As a process modeling tool, the GMDH algorithm determines a mathematical representation between tool flank wear and the measured variables involved. The GMDH method is said useful for forming a statistical model of a complex multi-variable system using a few process data. The tool wear model obtained by applying GMDH has considerably high prediction accuracy and indicates the influence of input variables on the cutting tool life. Special care was taken to avoid the influence of the dynamic phenomenon of turning process on the obtained experimental data. The derived model reveals that tool wear and consequently tool life is a complex function according to cutting parameters: speed, feed and depth of cut.DOI: http://dx.doi.org/10.5755/j01.mech.18.5.2696

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

في مجال التشغيل الآلي، لا يمكن دائمًا أن يؤدي استخدام النهج التقليدي لتطوير طريقة موثوقة للتنبؤ بتآكل الأدوات باستخدام نموذج رياضي يعتمد على التشوه البلاستيكي لمادة العمل إلى نتائج مرضية. في بعض الأحيان يعطي النموذج التقليدي أخطاء تنبؤية كبيرة إلى حد ما بسبب الاضطراب في عملية القطع. تتناول هذه الورقة التنبؤ بتآكل جناح الأداة في عملية الدوران باستخدام تقنية قوية تسمى طريقة المجموعة لمعالجة البيانات (GMDH). كأداة لنمذجة العملية، تحدد خوارزمية GMDH تمثيلًا رياضيًا بين تآكل جناح الأداة والمتغيرات المقاسة المعنية. يقال إن طريقة GMDH مفيدة لتشكيل نموذج إحصائي لنظام معقد متعدد المتغيرات باستخدام عدد قليل من بيانات العملية. يتميز نموذج تآكل الأداة الذي تم الحصول عليه من خلال تطبيق GMDH بدقة تنبؤ عالية إلى حد كبير ويشير إلى تأثير متغيرات الإدخال على عمر أداة القطع. تم إيلاء عناية خاصة لتجنب تأثير الظاهرة الديناميكية لعملية التحويل على البيانات التجريبية التي تم الحصول عليها. يكشف النموذج المشتق أن تآكل الأداة وبالتالي عمر الأداة هو وظيفة معقدة وفقًا لمعلمات القطع: السرعة والتغذية وعمق القطع. DOI: http://dx.doi.org/10.5755/j01.mech.18.5.2696

Translated Description (English)

In machining area, the use of conventional approach to develop a reliable method predicting tool wear with a mathematical model based on the plastic deformation of the work material cannot always deal to satisfactory results. Sometimes the conventional model gives rather large prediction errors by the disturbance into the cutting process. This paper deals with the prediction of the tool flank wear in a turning operation using the powerful technique called Group Method of data Handling (GMDH). As a process modeling tool, the GMDH algorithm determines a mathematical representation between tool flank wear and the measured variables involved. The GMDH method is said to be useful for forming a statistical model of a complex multi-variable system using a few process data. The tool wear model obtained by applying GMDH has considerably high prediction accuracy and indicates the influence of input variables on the cutting tool life. Special care was taken to avoid the influence of the dynamic phenomenon of turning process on the obtained experimental data. The derived model reveals that tool wear and consequently tool life is a complex function according to cutting parameters: speed, feed and depth of cut.DOI: http://dx.doi.org/10.5755/j01.mech.18.5.2696

Translated Description (French)

In machining area, the use of conventional approach to develop a reliable method predicting tool wear with a mathematical model based on the plastic deformation of the work material cannot always deal to satisfactory results. Parfois, le modèle conventionnel donne des erreurs de prévision plus larges en raison de la disturbance dans le processus de coupe. This paper deals with the prediction of the tool flank wear in a turning operation using the powerful technique called Group Method of data Handling (GMDH). As a process modeling tool, the GMDH algorithm determines a mathematical representation between tool flank wear and the measured variables involved. La méthode GMDH est utilisée pour former un modèle statistique d'un système multi-variable complexe en utilisant une nouvelle donnée de processus. The tool wear model obtained by applying GMDH has considerably high prediction accuracy and indicates the influence of input variables on the cutting tool life. Special care was taken to avoid the influence of the dynamic phenomenon of turning process on the obtained experimental data. The derived model reveals that tool wear and consequently tool life is a complex function according to cutting parameters : speed, feed and depth of cut.DOI : http://dx.doi.org/10.5755/j01.mech.18.5.2696

Translated Description (Spanish)

In machining area, the use of conventional approach to develop a reliable method predicting tool wear with a mathematical model based on the plastic deformation of the work material cannot always deal to satisfactory results. Sometimes the conventional model gives rather large prediction errors by the disturbance into the cutting process. This paper deals with the prediction of the tool flank wear in a turning operation using the powerful technique called Group Method of data Handling (GMDH). As a process modeling tool, the GMDH algorithm determines a mathematical representation between tool flank wear and the measured variables involved. El método GMDH se utiliza para formar un modelo estadístico de un sistema multi-variable complejo utilizando un conjunto de datos de proceso. The tool wear model obtained by applying GMDH has considerably high prediction accuracy and indicates the influence of input variables on the cutting tool life. Special care was taken to avoid the influence of the dynamic phenomenon of turning process on the obtained experimental data. The derived model reveals that tool wear and consequently tool life is a complex function according to cutting parameters: speed, feed and depth of cut.DOI: http://dx.doi.org/10.5755/j01.mech.18.5.2696

Files

1963.pdf

Files (675.7 kB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:0611e766796a4df38aaa15fec2939487
675.7 kB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
التنبؤ بتآكل أداة القطع باستخدام طريقة المجموعة لمعالجة البيانات (GMDH)
Translated title (English)
CUTTING TOOL WEAR PREDICTION BY USING THE GROUP METHOD OF DATA HANDLING (GMDH)
Translated title (French)
CUTTING TOOL WEAR PREDICTION BY USING THE GROUP METHOD OF DATA HANDLING (GMDH)
Translated title (Spanish)
CUTTING TOOL WEAR PREDICTION BY USING THE GROUP METHOD OF DATA HANDLING (GMDH)

Identifiers

Other
https://openalex.org/W1724711925
DOI
10.5755/j01.mech.18.5.2696

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Algeria

References

  • https://openalex.org/W1974113070
  • https://openalex.org/W1987624262
  • https://openalex.org/W2044718479
  • https://openalex.org/W2045441755
  • https://openalex.org/W2078652873
  • https://openalex.org/W2109611397
  • https://openalex.org/W2150913357