Published September 5, 2012 | Version v1
Publication Open

DETECTION OF COLLAPSED BUILDINGS BY CLASSIFYING SEGMENTED AIRBORNE LASER SCANNER DATA

  • 1. University of Twente
  • 2. Midlands State University
  • 3. Universität Innsbruck

Description

Abstract. Rapid mapping of damaged regions and individual buildings is essential for efficient crisis management. Airborne laser scanner (ALS) data is potentially able to deliver accurate information on the 3D structures in a damaged region. In this paper we describe two different strategies how to process ALS point clouds in order to detect collapsed buildings automatically. Our aim is to detect collapsed buildings using post event data only. The first step in the workflow is the segmentation of the point cloud detecting planar regions. Next, various attributes are calculated for each segment. The detection of damaged buildings is based on the values of these attributes. Two different classification strategies have been applied in order to test whether the chosen strategy is capable of detect- ing collapsed buildings. The results of the classification are analysed and assessed for accuracy against a reference map in order to validate the quality of the rules derived. Classification results have been achieved with accuracy measures from 60–85% complete- ness and correctness. It is shown that not only the classification strategy influences the accuracy measures; also the validation meth- odology, including the type and accuracy of the reference data, plays a major role.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

الملخص. يعد رسم الخرائط السريعة للمناطق المتضررة والمباني الفردية أمرًا ضروريًا لإدارة الأزمات بكفاءة. من المحتمل أن تكون بيانات الماسح الضوئي المحمول جواً (ALS) قادرة على تقديم معلومات دقيقة عن الهياكل ثلاثية الأبعاد في منطقة تالفة. في هذه الورقة، نصف استراتيجيتين مختلفتين لكيفية المعالجة كغيوم نقطية من أجل اكتشاف المباني المنهارة تلقائيًا. هدفنا هو الكشف عن المباني المنهارة باستخدام بيانات ما بعد الحدث فقط. تتمثل الخطوة الأولى في سير العمل في تقسيم المناطق المستوية للكشف عن السحابة النقطية. بعد ذلك، يتم حساب سمات مختلفة لكل مقطع. يعتمد الكشف عن المباني المتضررة على قيم هذه السمات. تم تطبيق استراتيجيتين مختلفتين للتصنيف من أجل اختبار ما إذا كانت الاستراتيجية المختارة قادرة على اكتشاف المباني المنهارة. يتم تحليل نتائج التصنيف وتقييمها للتأكد من دقتها مقابل خريطة مرجعية من أجل التحقق من جودة القواعد المستمدة. تم تحقيق نتائج التصنيف مع مقاييس الدقة من 60-85 ٪ من الاكتمال والصحة. يتضح أن استراتيجية التصنيف لا تؤثر فقط على مقاييس الدقة ؛ كما تلعب منهجية التحقق من الصحة، بما في ذلك نوع ودقة البيانات المرجعية، دورًا رئيسيًا.

Translated Description (English)

Abstract. Rapid mapping of damaged regions and individual buildings is essential for efficient crisis management. Airborne laser scanner (ALS) data is potentially able to deliver accurate information on the 3D structures in a damaged region. In this paper we describe two different strategies how to process AS point clouds in order to detect collapsed buildings automatically. Our aim is to detect collapsed buildings using post event data only. The first step in the workflow is the segmentation of the point cloud detecting planar regions. Next, various attributes are calculated for each segment. The detection of damaged buildings is based on the values of these attributes. Two different classification strategies have been applied in order to test whether the chosen strategy is capable of detecting collapsed buildings. The results of the classification are analysed and assessed for accuracy against a reference map in order to validate the quality of the rules derived. Classification results have been achieved with accuracy measures from 60–85% completeness and correctness. It is shown that not only the classification strategy influences the accuracy measures; also the validation methodology, including the type and accuracy of the reference data, plays a major role.

Translated Description (French)

Résumé. La cartographie rapide des régions endommagées et des bâtiments individuels est essentielle pour une gestion efficace des crises. Airborne laser scanner (ALS) data is potentially able to deliver accurate information on the 3D structures in a damaged region. In this paper we describe two different strategies how to process AS point clouds in order to detect collapsed buildings automatically. Notre aim est de détecter les bâtiments effondrés en utilisant uniquement les données post-événement. La première étape du flux de travail est la segmentation du point cloud de détection des régions planaires. Suivant, les attributs variables sont calculés pour chaque segment. La détection des bâtiments endommagés est basée sur les valeurs de ces attributs. Two different classification strategies have been applied in order to test whether the chosen strategy is capable of detect- ing collapsed buildings. Les résultats de la classification sont analysés et évalués pour la précision contre une carte de référence dans l'ordre de valider la qualité des règles dérivées. Classification results have been achieved with accuracy measures from 60–85% complete-ness and correctness. It is shown that not only the classification strategy influences the accuracy measures ; also the validation meth- odology, including the type and accuracy of the reference data, plays a major role.

Translated Description (Spanish)

Resumen. El mapeo rápido de regiones dañadas y edificios individuales es esencial para la gestión eficiente de crisis. Airborne laser scanner (ALS) data is potentially able to deliver accurate information on the 3D structures in a damaged region. In this paper we describe two different strategies how to process COMO point clouds in order to detect collapsed buildings automatically. Our aim is to detect collapsed buildings using post event data only. El primer paso en el flujo de trabajo es la segmentación de las regiones planas de detección de la nube de puntos. Next, various attributes are calculated for each segment. La detección de edificios dañados se basa en los valores de estos atributos. Two different classification strategies have been applied in order to test whether the chosen strategy is capable of detect- ing collapsed buildings. The results of the classification are analysed and assessed for accuracy against a reference map in order to validate the quality of the rules derived. Classification results have been achieved with accuracy measures from 60-85% complete- ness and correctness. It is shown that not only the classification strategy influences the accuracy measures; also the validation meth- odology, including the type and accuracy of the reference data, plays a major role.

Files

isprsarchives-XXXVIII-5-W12-307-2011.pdf.pdf

Files (838.5 kB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:928e6fd8922054533988b7aef36b6a96
838.5 kB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
الكشف عن المباني المنهارة عن طريق تصنيف بيانات الماسح الضوئي الليزري المجزأ المحمول جواً
Translated title (English)
DETECTION OF COLLAPSED BUILDINGS BY CLASSIFYING SEGMENTED AIRBORNE LASER SCANNER DATA
Translated title (French)
DETECTION OF COLLAPSED BUILDINGS BY CLASSIFYING SEGMENTED AIRBORNE LASER SCANNER DATA
Translated title (Spanish)
DETECTION OF COLLAPSED BUILDINGS BY CLASSIFYING SEGMENTADO AIRBORNE LASER SCANNER DATA

Identifiers

Other
https://openalex.org/W1993564935
DOI
10.5194/isprsarchives-xxxviii-5-w12-307-2011

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Zimbabwe

References

  • https://openalex.org/W155419516
  • https://openalex.org/W1568201516
  • https://openalex.org/W1984792953
  • https://openalex.org/W2006305514
  • https://openalex.org/W2027794006
  • https://openalex.org/W2033686454
  • https://openalex.org/W2071997121
  • https://openalex.org/W2082699349
  • https://openalex.org/W2095957984
  • https://openalex.org/W2139416101
  • https://openalex.org/W2304374093
  • https://openalex.org/W2750339080
  • https://openalex.org/W2907143170