Published June 4, 2019 | Version v1
Publication Open

UAVS ENHANCED NAVIGATION IN OUTDOOR GNSS DENIED ENVIRONMENT USING UWB AND MONOCULAR CAMERA SYSTEMS

  • 1. University of Calgary
  • 2. University of Padua
  • 3. Port Said University

Description

Abstract. The demand for small Unmanned Aerial Vehicles (UAVs) is massively increasing these days, due to the wide variety of applications utilizing such vehicles to perform tasks that may be dangerous or just to save time, effort, or cost. Small UAVs navigation system mainly depends on the integration between Global Navigation Satellite Systems (GNSS) and Inertial Measurement Unit (INS) to estimate the Positions, Velocities, and Attitudes (PVT) of the vehicle. Without GNSS such UAVs cannot navigate for long periods of time depending on INS alone, as the low-cost INS typically exhibits massive accumulation of errors during GNSS absence. Given the importance of ensuring full operability of the UAVs even during GNSS signals unavailability, other sensors must be used to bound the INS errors and enhance the navigation system performance. This paper proposes an enhanced UAV navigation system based on integration between monocular camera, Ultra-Wideband (UWB) system, and INS. In addition to using variable EKF weighting scheme. The paper also investigates this integration in the case of low density of UWB anchors, to reduce the cost required for such UWB system infrastructure. A GoPro Camera and UWB rover were attached to the belly of a quadcopter, an on the shelf commercial drone (3DR Solo), during the experimental flight. The velocity of the vehicle is estimated with Optical Flow (OF) from camera successive images, while the range measurements between the UWB rover and the stationary UWB anchors, which were distributed on the field, were used to estimate UAV position.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

ملخص. يزداد الطلب على المركبات الجوية الصغيرة بدون طيار (UAVs) بشكل كبير هذه الأيام، بسبب التنوع الواسع في التطبيقات التي تستخدم مثل هذه المركبات لأداء المهام التي قد تكون خطيرة أو لمجرد توفير الوقت أو الجهد أو التكلفة. يعتمد نظام ملاحة الطائرات بدون طيار الصغيرة بشكل أساسي على التكامل بين أنظمة الملاحة العالمية عبر الأقمار الصناعية (GNSS) ووحدة قياس القصور الذاتي (INS) لتقدير المواقع والسرعات والمواقف (PVT) للمركبة. بدون GNSS، لا يمكن لهذه الطائرات بدون طيار التنقل لفترات طويلة من الزمن اعتمادًا على INS وحدها، حيث أن INS منخفضة التكلفة عادة ما تظهر تراكمًا هائلاً من الأخطاء أثناء غياب GNSS. نظرًا لأهمية ضمان التشغيل الكامل للطائرات بدون طيار حتى أثناء عدم توفر إشارات GNSS، يجب استخدام مستشعرات أخرى لربط أخطاء INS وتعزيز أداء نظام الملاحة. تقترح هذه الورقة نظام ملاحة محسن للطائرات بدون طيار يعتمد على التكامل بين الكاميرا أحادية العين ونظام النطاق العريض الفائق (UWB) و INS. بالإضافة إلى استخدام مخطط ترجيح EKF المتغير. تبحث الورقة أيضًا في هذا التكامل في حالة انخفاض كثافة مراسي UWB، من أجل تقليل التكلفة المطلوبة لمثل هذه البنية التحتية لنظام UWB. تم تثبيت كاميرا GoPro ومركبة UWB على بطن مروحية رباعية، على طائرة بدون طيار تجارية على الرف (3DR Solo)، خلال الرحلة التجريبية. يتم تقدير سرعة السيارة بالتدفق البصري (OF) من الصور المتتالية للكاميرا، في حين تم استخدام قياسات المدى بين روفر UWB ومراسي UWB الثابتة، والتي تم توزيعها في الميدان، لتقدير موقع الطائرة بدون طيار.

Translated Description (English)

Abstract. The demand for small Unmanned Aerial Vehicles (UAVs) is massively increasing these days, due to the wide variety of applications utilizing such vehicles to perform tasks that may be dangerous or just to save time, effort, or cost. Small UAVs navigation system mainly depends on the integration between Global Navigation Satellite Systems (GNSS) and Inertial Measurement Unit (INS) TO estimate the Positions, Velocities, and Attitudes (PVT) of the vehicle. Without GNSS such UAVs cannot navigate for long periods of time depending on INS alone, as the low-cost INS typically exhibits massive accumulation of errors during GNSS absence. Given the importance of ensuring full operability of the UAVs even during GNSS signals unavailability, other sensors must be used to bound the INS errors and enhance the navigation system performance. This paper proposes an enhanced UAV navigation system based on integration between monocular camera, Ultra-Wideband (UWB) system, and INS. In addition to using variable EKF weighting scheme. The paper also investigates this integration in the case of low density of UWB anchors, in order to reduce the cost required for such UWB system infrastructure. A GoPro Camera and UWB rover were attached to the belly of a quadcopter, on the shelf commercial drone (3DR Solo), during the experimental flight. The velocity of the vehicle is estimated with Optical Flow (OF) from camera successive images, while the range measurements between the UWB rover and the stationary UWB anchors, which were distributed on the field, were used to estimate UAV position.

Translated Description (French)

Abstract. The demand for small Unmanned Aerial Vehicles (UAVs) is massivement increasing these days, due to the wide variety of applications utilizing such vehicles to perform tasks that may be dangerous or just to save time, effort, or cost. Small UAVs navigation system mainly depends on the integration between Global Navigation Satellite Systems (GNSS) and Inertial Measurement Unit (INS) to estimate the Positions, Velocities, and Attitudes (PVT) of the vehicle. Without GNSS search UAVs cannot navigate for long periods of time depending on INS alone, as the low-cost INS typically exhibits massive accumulation of errors during GNSS absence. Given the importance of ensuring full operability of the UAVs even during GNSS signals unavailability, other sensors must be used to bound the INS errors and enhance the navigation system performance. This paper proposes an enhanced UAV navigation system based on integration between monocular camera, Ultra-Wideband (UWB) system, and INS. En plus d'utiliser un régime de pondération EKF variable. The paper also investigates this integration in the case of low density of UWB anchors, to reduce the cost required for such UWB system infrastructure. A GoPro Camera and UWB rover were attached to the belly of a quadcopter, an on the shelf commercial drone (3DR Solo), during the experimental flight. La vélocité du véhicule est estimée avec un flux optique (OF) à partir d'images successives de la caméra, tandis que les mesures de plage entre le rover UWB et les ancrages UWB stationnaires, qui ont été distribuées sur le terrain, ont été utilisées pour estimer la position du drone.

Translated Description (Spanish)

Abstract. The demand for small Unmanned Aerial Vehicles (UAVs) is massively increasing these days, due to the wide variety of applications utilizing such vehicles to perform tasks that may be dangerous or just to save time, effort, or cost. Small UAVs navigation system mainly depends on the integration between Global Navigation Satellite Systems (GNSS) and Inertial Measurement Unit (INS) to estimate the Positions, Velocities, and Attitudes (Pvt) of the vehicle. Sin GNSS, busque UAVs que no puedan navegar durante largos períodos de tiempo dependientes de INS alone, como el bajo costo EN exhibiciones típicas de acumulación masiva de errores durante la ausencia de GNSS. Given the importance of ensuring full operability of the UAVs even during GNSS signals unavailability, other sensors must be used to bound the INS errors and enhance the navigation system performance. This paper proposes an enhanced UAV navigation system based on integration between monocular camera, Ultra-Wideband (UWB) system, and INS. In addition to using variable EKF weighting scheme. The paper also investigates this integration in the case of low density of UWB anchors, to reduce the cost required for such UWB system infrastructure. A GoPro Camera and UWB rover were attached to the belly of a quadcopter, an on the shelf commercial drone (3DR Solo), during the experimental flight. The velocity of the vehicle is estimated with Optical Flow (OF) from camera successive images, while the range measurements between the UWB rover and the stationary UWB anchors, which were distributed on the field, were used to estimate UAV position.

Files

isprs-archives-XLII-2-W13-665-2019.pdf.pdf

Files (4.0 MB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:0274d388aecedc6f384a93a4a73d9eb4
4.0 MB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
الطائرات بدون طيار تعزيز الملاحة في بيئة GNSS في الهواء الطلق المرفوضة باستخدام أنظمة UWB والكاميرا أحادية العين
Translated title (English)
UAVS ENHANCED NAVIGATION IN OUTDOOR GNSS DENIED ENVIRONMENT USING UWB AND MONOCULAR CAMERA SYSTEMS
Translated title (French)
UAV NAVIGATION AMÉLIORÉE DANS L'ENVIRONNEMENT DÉNUÉ DE GNSS EN PLEIN AIR À L'AIDE DE SYSTÈMES DE CAMÉRA UWB ET MONOCULAIRE
Translated title (Spanish)
NAVEGACIÓN MEJORADA DE VEHÍCULOS AÉREOS NO TRIPULADOS EN EL ENTORNO DENEGADO GNSS AL AIRE LIBRE UTILIZANDO SISTEMAS DE CÁMARAS UWB Y MONOCULAR

Identifiers

Other
https://openalex.org/W2948234468
DOI
10.5194/isprs-archives-xlii-2-w13-665-2019

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Egypt

References

  • https://openalex.org/W1677409904
  • https://openalex.org/W2053351481
  • https://openalex.org/W2288320174
  • https://openalex.org/W2296816139
  • https://openalex.org/W2905424732