Neural Poisson Factorization
- 1. Hanoi University of Science and Technology
- 2. Rakuten (Japan)
Description
In this work, we focus on dealing with a sparse users' feedback matrix and short descriptions/contents of items in recommender systems. We propose the Neural Poisson factorization (NPF) model which is a hybrid of deep learning and Poisson factorization. While Poisson factorization is suitable to model discrete, massive and sparse feedback, using a deep neural network and pre-trained word embeddings can learn hidden semantic in short item descriptions well. Therefore, NPF overcomes the limitation of existing models when dealing with short texts and a sparse feedback matrix. Moreover, we develop a random view algorithm based on stochastic learning for our model, in which each user is only viewed a random subset of items and his/her feedback on the subset is used to update his/her representation in each iteration. This approach is reasonable because each user can only know or view a partial subset of items when surfing a system. Extensive experiments illustrate the significant advantages of NPF over content-based matrix factorization methods and others that ignore item descriptions.
Translated Descriptions
Translated Description (Arabic)
في هذا العمل، نركز على التعامل مع مصفوفة ملاحظات المستخدمين المتفرقة والأوصاف القصيرة/محتويات العناصر في أنظمة التوصية. اقترحنا نموذج تحليل عوامل بواسون العصبي (NPF) وهو مزيج من التعلم العميق وتحليل عوامل بواسون. في حين أن تحليل عوامل بواسون مناسب للنموذج المنفصل، فإن التغذية الراجعة الضخمة والمتفرقة، باستخدام شبكة عصبية عميقة وتضمينات الكلمات المدربة مسبقًا يمكن أن تتعلم الدلالة المخفية في أوصاف العناصر القصيرة بشكل جيد. لذلك، يتغلب NPF على قيود النماذج الحالية عند التعامل مع النصوص القصيرة ومصفوفة التغذية الراجعة المتفرقة. علاوة على ذلك، نقوم بتطوير خوارزمية عرض عشوائي بناءً على التعلم العشوائي لنموذجنا، حيث يتم عرض كل مستخدم فقط مجموعة فرعية عشوائية من العناصر ويتم استخدام ملاحظاته على المجموعة الفرعية لتحديث تمثيله في كل تكرار. هذا النهج معقول لأن كل مستخدم يمكنه فقط معرفة أو عرض مجموعة فرعية جزئية من العناصر عند تصفح النظام. توضح التجارب المكثفة المزايا المهمة لـ NPF على طرق تحليل المصفوفة القائمة على المحتوى وغيرها من الطرق التي تتجاهل أوصاف العناصر.Translated Description (English)
In this work, we focus on dealing with a sparse users' feedback matrix and short descriptions/contents of items in recommender systems. We proposed the Neural Poisson factorization (NPF) model which is a hybrid of deep learning and Poisson factorization. While Poisson factorization is suitable for discrete model, massive and sparse feedback, using a deep neural network and pre-trained word embeddings can learn hidden semantic in short item descriptions well. Therefore, NPF overcomes the limitation of existing models when dealing with short texts and a sparse feedback matrix. Moreover, we develop a random view algorithm based on stochastic learning for our model, in which each user is only viewed a random subset of items and his/her feedback on the subset is used to update his/her representation in each iteration. This approach is reasonable because each user can only know or view a partial subset of items when surfing a system. Extensive experiments illustrate the significant advantages of NPF over content-based matrix factorization methods and others that ignore item descriptions.Translated Description (French)
In this work, we focus on dealing with a sparse users' feedback matrix and short descriptions/contents of items in recommender systems. We proposed the Neural Poisson factorization (NPF) model which is a hybrid of deep learning and Poisson factorization. While Poisson factorization is suitable to model discrete, massive and sparse feedback, using a deep neural network and pre-trained word embeddings can learn hidden semantic in short item descriptions well. Therefore, NPF overcomes the limitation of existing models when dealing with short texts and a sparse feedback matrix. Moreover, we develop a random view algorithm based on stochastic learning for our model, in which each user is only viewed a random subset of items and his/her feedback on the subset is used to update his/her representation in each iteration. This approach is reasonable because each user can only know or view a partial subset of items when surfing a system. Expériences extensives illustrées par les avantages significatifs des NPF sur les méthodes d'affacturage matricielles basées sur le contenu et d'autres méthodes qui ignorent les descriptions d'articles.Translated Description (Spanish)
In this work, we focus on dealing with a sparse users' feedback matrix and short descriptions/contents of items in recommender systems. We propuso the Neural Poisson factorization (NPF) model which is a hybrid of deep learning and Poisson factorization. While Poisson factorization is suitable to model discrete, massive and sparse feedback, using a deep neural network and pre-trained word embeddings can learn hidden semántic in short item descriptions well. Therefore, NPF overcomes the limitation of existing models when dealing with short texts and a sparse feedback matrix. Moreover, we develop a random view algorithm based on stochastic learning for our model, in which each user is only viewed a random subset of items and his/her feedback on the subset is used to update his/her representation in each iteration. This approach is reasonable because each user can only know or view a partial subset of items when surfing a system. Extensive experiments illustrate the significant advantages of NPF over content-based matrix factorization methods and others that ignore item descriptions.Files
09091827.pdf.pdf
Files
(245 Bytes)
Name | Size | Download all |
---|---|---|
md5:1ca35a42ee7eeb9be8180cd40b36a60b
|
245 Bytes | Preview Download |
Additional details
Additional titles
- Translated title (Arabic)
- تحليل السموم العصبية
- Translated title (English)
- Neural Poisson Factorization
- Translated title (French)
- Neural Poisson Factorization
- Translated title (Spanish)
- Neural Poisson Factorization
Identifiers
- Other
- https://openalex.org/W3025242862
- DOI
- 10.1109/access.2020.2994239
References
- https://openalex.org/W159693449
- https://openalex.org/W1936827159
- https://openalex.org/W1966626570
- https://openalex.org/W2004192095
- https://openalex.org/W2054141820
- https://openalex.org/W2082927600
- https://openalex.org/W2095705004
- https://openalex.org/W2101409192
- https://openalex.org/W2125261539
- https://openalex.org/W2135505871
- https://openalex.org/W2135790056
- https://openalex.org/W2157881433
- https://openalex.org/W2403286959
- https://openalex.org/W2509893387
- https://openalex.org/W2515117566
- https://openalex.org/W2556738441
- https://openalex.org/W2605246672
- https://openalex.org/W2654982261
- https://openalex.org/W2699188281
- https://openalex.org/W2745475103
- https://openalex.org/W2766111679
- https://openalex.org/W2783289928
- https://openalex.org/W2788315269
- https://openalex.org/W2789649582
- https://openalex.org/W2790504398
- https://openalex.org/W2792970765
- https://openalex.org/W2808391139
- https://openalex.org/W2891623083
- https://openalex.org/W2948397587
- https://openalex.org/W2962915345
- https://openalex.org/W2963111172
- https://openalex.org/W4231510805
- https://openalex.org/W4294562888
- https://openalex.org/W4297663545