Published April 30, 2015 | Version v1
Publication Open

MAPPING OF ALGAE RICHNESS USING SPATIAL DATA INTERPOLATION

Description

Abstract. This work describes the generation of a database of algal species richness at two spatial scales – regional (Gulf of Mexico and the Caribbean) and global (coastal zones). As a first approach to the definition of the temporal variability, and to produce the corresponding maps, a previously published decision tree is used in order to select the best spatial interpolation technique according to the characteristics of the spatial data. The methods presented are ordinary Kriging (since no relationship exists with any environmental variable that could function as an external variable) and inverse distance squared, for comparative purposes. The methods to generate the spatial layers are evaluated using the leave-one-out cross validation technique. Although the evaluation did not find a large correspondence (in terms of linear regression) between the interpolated and measured values, it was possible to capture the spatial variability of the process and produce the cartography of this variable, with which future ecological analyses can be performed.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

الملخص. يصف هذا العمل إنشاء قاعدة بيانات لثراء أنواع الطحالب على مستويين مكانيين – إقليمي (خليج المكسيك ومنطقة البحر الكاريبي) وعالمي (المناطق الساحلية). كطريقة أولى لتعريف التباين الزمني، ولإنتاج الخرائط المقابلة، يتم استخدام شجرة قرار منشورة مسبقًا من أجل اختيار أفضل تقنية استيفاء مكاني وفقًا لخصائص البيانات المكانية. الطرق المعروضة هي كريغينغ العادية (حيث لا توجد علاقة مع أي متغير بيئي يمكن أن يعمل كمتغير خارجي) والمسافة العكسية مربعة، لأغراض المقارنة. يتم تقييم طرق إنشاء الطبقات المكانية باستخدام تقنية التحقق المتقاطع من المغادرة. على الرغم من أن التقييم لم يجد تطابقًا كبيرًا (من حيث الانحدار الخطي) بين القيم المستكملة والمقاسة، إلا أنه كان من الممكن التقاط التباين المكاني للعملية وإنتاج رسم الخرائط لهذا المتغير، والذي يمكن من خلاله إجراء التحليلات البيئية المستقبلية.

Translated Description (English)

Abstract. This work describes the generation of a database of algal species richness at two spatial scales – regional (Gulf of Mexico and the Caribbean) and global (coastal zones). As a first approach to the definition of the temporal variability, and to produce the corresponding maps, a previously published decision tree is used in order to select the best spatial interpolation technique according to the characteristics of the spatial data. The methods presented are ordinary Kriging (since no relationship exists with any environmental variable that could function as an external variable) and inverse distance squared, for comparative purposes. The methods to generate the spatial layers are evaluated using the leave-one-out cross validation technique. Although the evaluation did not find a large correspondence (in terms of linear regression) between the interpolated and measured values, it was possible to capture the spatial variability of the process and produce the cartography of this variable, with which future ecological analyses can be performed.

Translated Description (French)

Abstract. This work describes the generation of a database of algal species richness at two spatial scales – regional (Gulf of Mexico and the Caribbean) and global (coastal zones). As a first approach to the definition of the temporal variability, and to produce the corresponding maps, a previously published decision tree is used in order to select the best spatial interpolation technique according to the characteristics of the spatial data. Les méthodes présentées sont le crénelage ordinaire (aucune relation n'existe avec toute variable environnementale qui pourrait fonctionner comme une variable externe) et la distance inverse carrée, à des fins comparatives. Les méthodes pour générer les couches spatiales sont évaluées à l'aide de la technique de validation croisée leave-one-out. Si l'évaluation n'a pas permis de trouver une large correspondance (dans les termes de la régression linéaire) entre les valeurs interpolées et mesurées, il était possible de capturer la variabilité spatiale du processus et de produire la cartographie de cette variable, avec laquelle les analyses écologiques futures peuvent être réalisées.

Translated Description (Spanish)

Abstract. This work describes the generation of a database of algal species richness at two spatial scales – regional (Gulf of Mexico and the Caribbean) and global (coastal zones). As a first approach to the definition of the temporal variability, and to produce the corresponding maps, a previously published decision tree is used in order to select the best spatial interpolation technique according to the characteristics of the spatial data. The methods presented are ordinary Kriging (since no relationship exists with any environmental variable that could function as an external variable) and inverse distance squared, for comparative purposes. The methods to generate the spatial layers are evaluated using the leave-one-out cross validation technique. Although the evaluation did not find a large correspondence (in terms of linear regression) between the interpolated and measured values, it was possible to capture the spatial variability of the process and produce the cartography of this variable, with which future ecological analyses can be performed.

Files

isprsarchives-XL-7-W3-1005-2015.pdf.pdf

Files (816.8 kB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:229ce1f415f525d35738d94edc9a8b92
816.8 kB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
رسم خرائط ثراء الطحالب باستخدام استيفاء البيانات المكانية
Translated title (English)
MAPPING OF ALGAE RICHNESS USING SPATIAL DATA INTERPOLATION
Translated title (French)
MAPPING OF ALGAE RICHNESS USING SPATIAL DATA INTERPOLATION
Translated title (Spanish)
MAPPING OF ALGAE RICHNESS USING SPATIAL DATA INTERPOLATION

Identifiers

Other
https://openalex.org/W2014326150
DOI
10.5194/isprsarchives-xl-7-w3-1005-2015

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Mexico

References

  • https://openalex.org/W1535717470
  • https://openalex.org/W1540785627
  • https://openalex.org/W169034640
  • https://openalex.org/W1747416508
  • https://openalex.org/W1813590378
  • https://openalex.org/W2009109438
  • https://openalex.org/W2022799863
  • https://openalex.org/W2046048669
  • https://openalex.org/W2249432512
  • https://openalex.org/W2337920525
  • https://openalex.org/W2965720541
  • https://openalex.org/W3138949179