Published March 16, 2020 | Version v1
Publication

PARAMETER ESTIMATION SPACE FOR UNKNOWN INTERNAL EVOLUTION ON IOT DOMOTIC SYSTEMS

  • 1. Universidad del Istmo
  • 2. Instituto Politécnico Nacional

Description

This paper describes the parameter estimation modeling concerning a domotic designer bot system with internet of things (IoT) assistance using the probabilistic operator based on the stochastic parameter estimation through the moments and the recursive conditions. Light, CCTV, presence, and temperature are IoT data monitored, shared, and accessed by the internet for a smart office designer performance that evolves based on historical web data. The relationship established by Wiener between covariance and variance found the parameter time evolution by observing through the time. The development is viewed in the visible results between non-recursive and recursive mathematical structures. In both cases, the convergence rate is based on probabilistic estimation, the functional error presents a high convergence rate which is viewed as an effect of the function of a density function. The estimate considered a non-invasive perspective, and it helps in different applications such as health diagnosis in humans and animals with internal problems, or systems which are unknown for internal evolution such as for IoT model adoption. Therefore, our objective is to propose a black box, inner approximation through the parameter estimation without a no invasive stochastic method based in Wiener approximation.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

تصف هذه الورقة نمذجة تقدير المعلمة المتعلقة بنظام روبوت المصمم المحلي بمساعدة إنترنت الأشياء (IoT) باستخدام المشغل الاحتمالي بناءً على تقدير المعلمة العشوائية من خلال اللحظات والظروف المتكررة. الضوء والدوائر التلفزيونية المغلقة والوجود ودرجة الحرارة هي بيانات إنترنت الأشياء التي يتم مراقبتها ومشاركتها والوصول إليها بواسطة الإنترنت للحصول على أداء مصمم مكتب ذكي يتطور بناءً على بيانات الويب التاريخية. وجدت العلاقة التي أنشأها وينر بين التباين المشترك والتباين التطور الزمني للمعلمة من خلال المراقبة عبر الزمن. وينظر إلى التطور في النتائج المرئية بين الهياكل الرياضية غير التكرارية والتكرارية. في كلتا الحالتين، يعتمد معدل التقارب على التقدير الاحتمالي، ويقدم الخطأ الوظيفي معدل تقارب مرتفع يُنظر إليه على أنه تأثير لوظيفة دالة الكثافة. يعتبر التقدير منظورًا غير جراحي، ويساعد في تطبيقات مختلفة مثل التشخيص الصحي لدى البشر والحيوانات التي تعاني من مشاكل داخلية، أو الأنظمة غير المعروفة للتطور الداخلي مثل اعتماد نموذج إنترنت الأشياء. لذلك، هدفنا هو اقتراح مربع أسود، تقريب داخلي من خلال تقدير المعلمة دون طريقة عشوائية غير غازية تستند إلى تقريب وينر.

Translated Description (English)

This paper describes the parameter estimation modeling concerning a domotic designer bot system with internet of things (IoT) assistance using the probabilistic operator based on the stochastic parameter estimation through the moments and the recursive conditions. Light, CCTV, presence, and temperature are IoT data monitored, shared, and accessed by the internet for a smart office designer performance that evolves based on historical web data. The relationship established by Wiener between covariance and variance found the parameter time evolution by observing through time. The development is viewed in the visible results between non-recursive and recursive mathematical structures. In both cases, the convergence rate is based on probabilistic estimation, the functional error presents a high convergence rate which is viewed as an effect of the function of a density function. The estimate considered a non-invasive perspective, and it helps in different applications such as health diagnosis in humans and animals with internal problems, or systems which are unknown for internal evolution such as for IoT model adoption. Therefore, our objective is to propose a black box, inner approximation through the parameter estimation without a no invasive stochastic method based in Wiener approximation.

Translated Description (French)

Ce document décrit le paramètre estimation modeling concerning a domotic designer bot system with internet of things (IoT) assistance using the probabilistic operator based on the stochastic parameter estimation through the moments and the recursive conditions. Light, CCTV, presence, and temperature are IoT data monitored, shared, and accessed by the internet for a smart office designer performance that evolves based on historical web data. The relationship established by Wiener between covariance and variance found the parameter time evolution by observing through the time. Le développement est vu dans les résultats visibles entre les structures mathématiques non récursives et récursives. Dans les deux cas, le taux de convergence est basé sur l'estimation probabiliste, l'erreur fonctionnelle présente un taux de convergence élevé qui est considéré comme un effet de la fonction d'une fonction de densité. The estimate considered a non-invasive perspective, and it helps in different applications such as health diagnosis in human and animals with internal problems, or systems which are unknown for internal evolution such as for IoT model adoption. Therefore, our objective is to propose a black box, inner approximation through the parameter estimation without a invasive stochastic method based in Wiener approximation.

Translated Description (Spanish)

This paper describes the parameter estimation modeling concerning a domotic designer bot system with internet of things (IoT) assistance using the probabilistic operator based on the stochastic parameter estimation through the moments and the recursive conditions. Light, CCTV, presence, and temperature are IoT data monitored, shared, and accessed by the internet for a smart office designer performance that evolves based on historical web data. The relationship established by Wiener between covariance and variance found the parameter time evolution by observing through the time. The development is viewed in the visible results between non-recursive and recursive mathematical structures. In both cases, the convergence rate is based on probabilistic estimation, the functional error presents a high convergence rate which is viewed as an effect of the function of a density function. The estimate considered a non-invasive perspective, and it helps in different applications such as health diagnosis in humans and animals with internal problems, or systems which are unknown for internal evolution such as for IoT model adoption. Therefore, our objective is to propose a black box, inner aproximation through the parameter estimation without a no invasive stochastic method based in Wiener aproximation.

Additional details

Additional titles

Translated title (Arabic)
مساحة تقدير المعلمة للتطور الداخلي غير المعروف على أنظمة IOT DOMOTIC
Translated title (English)
PARAMETER ESTIMATION SPACE FOR UNKNOWN INTERNAL EVOLUTION ON IOT DOMOTIC SYSTEMS
Translated title (French)
PARAMÈTRE ESTIMATION SPACE FOR UNKNOWN INTERNAL EVOLUTION ON IOT DOMOTIC SYSTEMS
Translated title (Spanish)
PARÁMETRO ESTIMATION SPACE FOR UNKNOWN INTERNAL EVOLUTION ON IOT DOMOTIC SYSTEMS

Identifiers

Other
https://openalex.org/W3009207103
DOI
10.1142/s0218348x20500668

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Mexico

References

  • https://openalex.org/W1516289514
  • https://openalex.org/W1965004915
  • https://openalex.org/W1967696989
  • https://openalex.org/W2002380493
  • https://openalex.org/W2022717532
  • https://openalex.org/W2046586217
  • https://openalex.org/W2074909589
  • https://openalex.org/W2088310696
  • https://openalex.org/W2098290011
  • https://openalex.org/W2099723392
  • https://openalex.org/W2106427050
  • https://openalex.org/W2128662114
  • https://openalex.org/W2140246545
  • https://openalex.org/W2146012284
  • https://openalex.org/W2265937691
  • https://openalex.org/W2281207978
  • https://openalex.org/W2427043301
  • https://openalex.org/W2500220314
  • https://openalex.org/W2884623344
  • https://openalex.org/W3123021321
  • https://openalex.org/W4297969627