Published January 1, 2020 | Version v1
Publication

Regions of variability for a subclass of analytic functions

  • 1. Abbottabad University of Science and Technology
  • 2. Government College University, Faisalabad
  • 3. Yangzhou University

Description

Let $A\in \mathbb{C}, $ $B\in \lbrack -1, 0)\ $and $\alpha \in \left(-\frac{\pi }{2}, \frac{\pi }{2% }\right) $. Then $C_{\alpha }\left[ A, B\right] $ denotes the class of analytic functions $f$ in the open unit disc with \lt i \gt f \lt /i \gt (0) = 0 = \lt i \gt f \lt /i \gt '(0)-1 such that $ \begin{equation*} e^{i\alpha }\left(1+\frac{zf^{\prime \prime }\left(z\right) }{f^{\prime }\left(z\right) }\right) = \cos \alpha p\left(z\right) +i\sin \alpha, \end{equation*} $ with $ \begin{equation*} p\left(z\right) = \frac{1+Aw\left(z\right) }{1+Bw\left(z\right) }, \end{equation*} $ where $w\left(0\right) = 0$ and $\left\vert w\left(z\right) \right\vert \lt 1.$ Region of variability problems provides accurate information about a class of univalent functions than classical growth distortion and rotation theorems. In this article we find the regions of variability $V_{\lambda }\left(z_{0}, A, B\right) $ for $\log f^{\prime }\left(z_{0}\right) \ $when $f$ ranges over the class $C_{\alpha }\left[ \lambda, A, B\right] $ defined as $ \begin{equation*}{{C}_{\alpha }}\left[ \lambda, A, B \right] = \left\{ f\in {{C}_{\alpha }}\left[ A, B \right]:f''\left(0 \right) = \left(A-B \right){{e}^{-i\alpha }}\cos \alpha \right\}\end{equation*} $ for any fixed $z_{0}\in E$ and $\lambda \in \overline{E}$. As a consequence, the regions of variability are also illustrated graphically for different sets of parameters.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

دع $A\in \mathbb{C}، $B\in\ lbrack -1، 0 )\$ و $\ alpha\ in\left (-\ frac {\ pi }{ 2}، \frac {\ pi }{ 2%}\right )$. ثم يشير $C _{\alpha }\ left[ A, B\right ]$ إلى فئة الوظائف التحليلية $ f$ في قرص الوحدة المفتوحة مع \lt i\ gt f\lt/i \gt (0) = 0 =\ lt i \gt f\lt/i \gt '( 0 )-1 بحيث $\ begin{equation*} e ^{ i \ alpha}\ left (1 +\ frac{zf ^{\ prime\ prime}\ left (z\ right )}{ f^{\ prime}\ left(z\right)}\ right ))=\ cos\ alpha p\left(z\right )+ i\ sin\ alpha,\ end {equation *}$ with $\ begin {equation *} p\ left(z\ right )=\ frac {1 + Aw\left(z\ right )}{ 1 + Bw\ left (z\ right)},\ end{المعادلة *}$ w\left(0 )=$$\ right ($ 0) and $\ left\ vert (z\left(z\right )=\ end{{1+Aw\left(z\ right)}} حيث $w\ left (0)\ right ($ 0) and $\ left\ vert (z\ left (z\ right)\ ft (z\ right)\ lt (1)\ lt\right\ lt\ lt\ lt\lt\lt.$ توفر منطقة مشكلات التباين معلومات دقيقة حول فئة من الوظائف أحادية التكافؤ بدلاً من نظريات تشوه النمو والدوران الكلاسيكية. في هذه المقالة، نجد مناطق التباين $V _{\lambda}\left(z _{ 0}, A, B\right )$ for $\log f^{\ prime}\left(z _{ 0}\ right )\$ when $f$ ranges over the class $C _{\ alpha }\ left[\lambda, A, B\right ]$ defined as $\begin{equation *}{{ C }_{\alpha }}\left [\lambda, A, B \right ]=\ left \{ f\in {{C }_{\alpha }}\ left[ A, B \right]:f'\left(0 \right )=\left(A - B \right ){{ e }^{- i\alpha }}\cos \alpha \right\}\ end{equation *}$ for any fixed $z _{ 0}\in $ E and $\ lambda\ over \$ Eline. ونتيجة لذلك، يتم أيضًا توضيح مناطق التباين بيانيًا لمجموعات مختلفة من المعلمات.

Translated Description (French)

Soient $A\in \mathbb{C}, $ $B\in \lbrack -1, 0)\ $et $ \alpha \in \left(-\frac{\pi }{2}, \frac{\pi }{2% }\right) $ . Alors $C_{\alpha }\left[ A, B\right] $ désigne la classe de fonctions analytiques $f$ dans l'unité de disque ouverte avec \lt i \gt f \lt /i \gt (0) = 0 = \lt i \gt f \lt /i \gt '(0)-1 telle que $ \begin{equation*} e^{i\alpha }\left(1+\frac{zf^{\prime \prime }\left(z\right) }{f^{\prime }\left(z\right) }\right) = \cos \alpha p\left(z\right) +i\sin \alpha, \end{equation*} $ avec $ \begin{equation*} p\left(z\right) = \frac{1+Aw\left(z\right) }{1+Bw\left(z\right) }, \end{equation*} $ où $w\left(0\right) = 0 $ et $ \left\vert\left(z\right) \right\\ l\ vertt 1.$ La région des problèmes de variabilité fournit des informations précises sur une classe de fonctions univalentes par rapport aux théorèmes classiques de distorsion de croissance et de rotation. Dans cet article, nous trouvons les régions de variabilité $V_{\lambda }\left(z_{0}, A, B\right) $ pour $ \log f^{\prime }\left(z_{0}\right) \ $lorsque $f$ s' étend sur la classe $C_{\alpha }\ left[ \lambda, A, B\right] $ définie comme $ \begin{equation*}{{C}_{\alpha }}\left[ \lambda, A, B \right] = \left\{ f\in {{C}_{\alpha }}\left[ A, B \right] :f''\left(0 \right) = \left(A-B \right){{e}^{-i\alpha }}\cos\ alpha\ right\}\end{equation*} $ pour tout $z_{0}\in E$ et $ \lambda \in \overline{E}$ . En conséquence, les régions de variabilité sont également illustrées graphiquement pour différents ensembles de paramètres.

Translated Description (Spanish)

Sea $A\in \mathbb{C}, $ $B\in \lbrack -1, 0)\ $y $\alpha \in \left(-\frac{\pi }{2}, \frac{\pi }{2% }\right) $. Entonces $C_{\alpha }\left[ A, B\right] $ denota la clase de funciones analíticas $f$ en el disco de unidad abierta con \lt i \gt f \lt /i \gt (0) = 0 = \lt i \gt f \lt /i \gt '(0)-1 tal que $ \begin{equation*} e^{i\alpha }\left(1+\frac{zf^{\prime \prime }\left(z\right) }{f^{\prime }\left(z\right) }\right) = \cos \alpha p\left(z\right) +i\sin \alpha, \end{equation*} $ con $ \begin{equation*} p\left(z\right) = \frac{1+Aw\left(z\right) }{1+Bw\left(z\right) }, \end{equation*} $ donde $w\left(0\right) = 0 $ y $\left\vert w\left(z\right) \right\vert \lt 1.$ La región de problemas de variabilidad proporciona información precisa sobre una clase de funciones univalentes que los teoremas clásicos de distorsión del crecimiento y rotación. En este artículo encontramos las regiones de variabilidad $V_{\lambda }\left(z_{0}, A, B\right) $ for $\log f^{\prime }\left(z_{0}\right) \ $when $f$ range over the class $C_{\alpha }\left[ \lambda, A, B\right] $ defined as $ \begin{equation*}{{C}_{\alpha }}\left[ \lambda, A, B \right] = \left\{ f\in {{C}_{\alpha }}\left[ A, B \right]:f''\left(0 \right) = \left(A-B \right){{e}^{-i\alpha }}\cos \alpha \right\}\end{equation*} $ for any fixed $z_{0}\in E$ and $\lambda \in \overline{E}$. Como consecuencia, las regiones de variabilidad también se ilustran gráficamente para diferentes conjuntos de parámetros.

Additional details

Additional titles

Translated title (Arabic)
مناطق التباين لفئة فرعية من الوظائف التحليلية
Translated title (French)
Régions de variabilité pour une sous-classe de fonctions analytiques
Translated title (Spanish)
Regiones de variabilidad para una subclase de funciones analíticas

Identifiers

Other
https://openalex.org/W3014626982
DOI
10.3934/math.2020217

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Pakistan

References

  • https://openalex.org/W1965556558
  • https://openalex.org/W1969616129
  • https://openalex.org/W2003384133
  • https://openalex.org/W2018920123
  • https://openalex.org/W2022732648
  • https://openalex.org/W2028124223
  • https://openalex.org/W2035564698
  • https://openalex.org/W2057540087
  • https://openalex.org/W2075325225
  • https://openalex.org/W2135563904
  • https://openalex.org/W2791361229
  • https://openalex.org/W2963900792