Published April 12, 2017 | Version v1
Publication Open

Positive solutions and persistence of mass for a nonautonomous equation with fractional diffusion

  • 1. Autonomous University of Aguascalientes

Description

In this paper, we study the partial differential equation 1 $$\begin{aligned} \begin{aligned} \partial _tu&= k(t)\Delta _\alpha u - h(t)\varphi (u),\\ u(0)&= u_0. \end{aligned} \end{aligned}$$ Here $$\Delta _\alpha =-(-\Delta )^{\alpha /2}$$ , $$0<\alpha <2$$ , is the fractional Laplacian, $$k,h:[0,\infty )\rightarrow [0,\infty )$$ are continuous functions and $$\varphi :\mathbb {R}\rightarrow [0,\infty )$$ is a convex differentiable function. If $$0\le u_0\in C_b(\mathbb {R}^d)\cap L^1(\mathbb {R}^d)$$ we prove that (1) has a non-negative classical global solution. Imposing some restrictions on the parameters we prove that the mass $$M(t)=\int _{\mathbb {R}^d}u(t,x)\mathrm{d}x$$ , $$t>0$$ , of the system u does not vanish in finite time, moreover we see that $$\lim _{t\rightarrow \infty }M(t)>0$$ , under the restriction $$\int _0^\infty h(s)\mathrm{d}s<\infty $$ . A comparison result is also obtained for non-negative solutions, and as an application we get a better condition when $$\varphi $$ is a power function.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

في هذه الورقة، ندرس المعادلة التفاضلية الجزئية 1 $$\ begin{aligned}\begin{aligned}\partial _tu&= k(t)\Delta _\ alpha u - h(t)\varphi (u),\\ u (0 )&= u _0. \end{aligned}\end{aligned }$$ Here $$\ Delta _\ alpha =-(-\ Delta )^{\ alpha /2 }$, $ 0<\ alpha <2 $$, is the fractional Laplacian, $$k, h:[0,\infty )\ rightarrow [0,\infty )$$ are continuous functions and $$\ varphi :\ mathbb {R}\rightarrow [0,\infty )$ is a convex differentiable function. إذا كان $$ 0\le u _0\in C_b(\mathbb {R }^d)\cap L^1(\mathbb {R }^d)$ نثبت أن (1) لديه حل عالمي كلاسيكي غير سلبي. بفرض بعض القيود على المعلمات، نثبت أن الكتلة $$M(t )=\int _{\ mathbb {R }^d}u(t,x)\mathrm{d}x$$ , $$t>0 $$ ، للنظام الذي لا تتلاشى في وقت محدود، علاوة على ذلك، نرى أن $$\ lim _{ t\rightarrow \infty }M(t )>0 $$ ، تحت القيد $$\ int _0 ^\ infty h(s)\mathrm{d}s<\infty $$ . يتم الحصول أيضًا على نتيجة مقارنة للحلول غير السالبة، وكتطبيق نحصل على حالة أفضل عندما يكون $$\ varphi $$ دالة طاقة.

Translated Description (French)

Dans cet article, nous étudions l'équation différentielle partielle 1 $$\begin{aligné} \begin{aligné} \partial _tu&= k(t)\Delta _\alpha u - h(t)\varphi (u),\\ u(0)&= u_0. \end{aligné} \end{aligné}$$ Here $$\Delta _\alpha =-(-\Delta )^{\alpha /2}$$ , $$ 0<\alpha <2 $$ , est le Laplacien fractionnaire, $$k,h :[0,\infty )\rightarrow [0,\infty )$$ sont des fonctions continues et $$\varphi :\mathbb {R}\rightarrow [0,\infty )$$ est une fonction différentiable convexe. Si $$ 0\le u_0\in C_b(\mathbb {R}^d)\cap L^1(\mathbb {R}^d)$$ nous prouvons que (1) a une solution globale classique non négative. En imposant quelques restrictions sur les paramètres on prouve que la masse $$M(t)=\int _{\mathbb {R}^d}u(t,x)\mathrm{d}x$$ , $$t>0 $$ , du système u ne disparaît pas en temps fini, de plus on voit que $$\lim _{t\rightarrow \infty }M(t)>0 $$ , sous la restriction $$\int _0^\infty h(s)\mathrm{d}s<\infty $$ . Un résultat de comparaison est également obtenu pour les solutions non négatives, et en tant qu'application, nous obtenons une meilleure condition lorsque $$\varphi $$ est une fonction de puissance.

Translated Description (Spanish)

En este trabajo, estudiamos la ecuación diferencial parcial 1 $$\begin{aligned} \begin{aligned} \partial _tu&= k(t)\Delta _\alpha u - h(t)\varphi (u),\\ u(0)&= u_0. \end{aligned} \end{aligned}$$ Aquí $$\Delta _\alpha =-(-\Delta )^{\alpha /2}$$ , $$ 0<\alpha <2 $$ , es el laplaciano fraccional, $$k,h:[0,\infty )\rightarrow [0,\infty )$$ son funciones continuas y $$\varphi :\mathbb {R}\rightarrow [0,\infty )$$ es una función diferenciable convexa. Si $$ 0\le u_0\en C_b(\mathbb {R}^d)\cap L^1(\mathbb {R}^d)$$ demostramos que (1) tiene una solución global clásica no negativa. Imponiendo algunas restricciones a los parámetros probamos que la masa $$M(t)=\int _{\mathbb {R}^d}u(t,x)\mathrm{d}x$$ , $$t>0 $$ , del sistema u no se desvanece en tiempo finito, además vemos que $$\lim _{t\rightarrow \infty }M(t)>0 $$ , bajo la restricción $$\int _0^\infty h(s)\mathrm{d}s<\infty $$ . También se obtiene un resultado de comparación para soluciones no negativas, y como aplicación obtenemos una mejor condición cuando $$\varphi $$ es una función de potencia.

Files

10.1007%2Fs40065-017-0167-3.pdf.pdf

Files (604.0 kB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:10629798feab2a6dfe58d1ff9cabbc56
604.0 kB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
الحلول الإيجابية واستمرار الكتلة لمعادلة غير مستقلة مع الانتشار الكسري
Translated title (French)
Solutions positives et persistance de masse pour une équation non autonome à diffusion fractionnée
Translated title (Spanish)
Soluciones positivas y persistencia de masa para una ecuación no autónoma con difusión fraccionaria

Identifiers

Other
https://openalex.org/W2605667766
DOI
10.1007/s40065-017-0167-3

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Mexico

References

  • https://openalex.org/W146701665
  • https://openalex.org/W1547601445
  • https://openalex.org/W1596978284
  • https://openalex.org/W1963794767
  • https://openalex.org/W1967905481
  • https://openalex.org/W1998437737
  • https://openalex.org/W2016341086
  • https://openalex.org/W2055529029
  • https://openalex.org/W2068280897
  • https://openalex.org/W2096035658
  • https://openalex.org/W2595897327
  • https://openalex.org/W4213329537
  • https://openalex.org/W4241423584