Published December 1, 2015 | Version v1
Publication Open

Strong Chang's Conjecture and the tree property at ω2

  • 1. TU Wien
  • 2. Chinese Academy of Sciences

Description

We prove that a strong version of Chang's Conjecture together with 2ω=ω2 implies there are no ω2-Aronszajn trees.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

نثبت أن النسخة القوية من تخمين تشانغ مع 2 ω =ω 2 تعني أنه لا توجد أشجار ω 2 - Aronszajn.

Translated Description (French)

Nous prouvons qu'une version forte de la conjecture de Chang avec 2ω=ω2 implique qu'il n'y a pas d'arbres ω2-Aronszajn.

Translated Description (Spanish)

Demostramos que una versión fuerte de la conjetura de Chang junto con 2ω=ω2 implica que no hay árboles ω2-Aronszajn.

Files

1307.3731.pdf

Files (10.4 kB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:5a7ae30174b91634a41fa53d8bfbe516
10.4 kB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
تخمين تشانغ القوي وخاصية الشجرة في ω 2
Translated title (French)
Conjecture de Chang forte et propriété de l'arbre à ω2
Translated title (Spanish)
La conjetura de Chang fuerte y la propiedad del árbol en ω2

Identifiers

Other
https://openalex.org/W1509035603
DOI
10.1016/j.topol.2015.05.061

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
China

References

  • https://openalex.org/W1595388840
  • https://openalex.org/W1932818938
  • https://openalex.org/W1981694349
  • https://openalex.org/W2007561054
  • https://openalex.org/W2040139506
  • https://openalex.org/W2046445464
  • https://openalex.org/W2060532664
  • https://openalex.org/W2093788800
  • https://openalex.org/W2143103819
  • https://openalex.org/W4231233059