Published December 5, 2023 | Version v1
Publication Open

3D MAPPING OF BENTHIC HABITAT USING XGBOOST AND STRUCTURE FROM MOTION PHOTOGRAMMETRY

  • 1. Memorial University of Newfoundland
  • 2. Cairo University

Description

Abstract. Benthic habitats mapping is essential to the management and conservation of marine ecosystems. The traditional methods of mapping benthic habitats, which involve multibeam data acquisition and manually collecting and annotating imagery data, are time-consuming. However, with technological advances, using machine learning (ML) algorithms with structure-from-motion (SfM) photogrammetry has become a promising approach for mapping benthic habitats accurately and at very high resolutions. This paper explores using SfM photogrammetry and extreme gradient boosting (XGBoost) classifier for benthic habitat 3D mapping of a vertical wall at the Charlie-Gibbs Fracture Zone in the North Atlantic Ocean. The classification workflow started with extracting frames from video footage. The SfM was then applied to reconstruct the 3D point cloud of the wall. Thereafter, nine geometric features were derived from the 3D point cloud geometry. The XGBoost classifier was then used to classify the vertical wall into rock, sponges, and corals (Case 1 - three classes). In addition, we separated the sponges class into three types of sponges: Demospongiae, Hexactinellida, and other Porifera (Case 2 - five classes). Moreover, we compared the results from XGBoost with the widely used ML classifier, random forest (RF). For Case 2, XGBoost achieved an overall accuracy (OA) of 74.45%, while RF achieved 73.10%. The OA improved by about 10% from both classifiers when the three types of sponges were combined into one class (Case 1). Results showed that the presented 3D mapping of benthic habitat has the potential to provide more detailed and accurate information about marine ecosystems.

⚠️ This is an automatic machine translation with an accuracy of 90-95%

Translated Description (Arabic)

الخلاصة. يعد رسم خرائط الموائل القاعية أمرًا ضروريًا لإدارة النظم الإيكولوجية البحرية والحفاظ عليها. إن الطرق التقليدية لرسم خرائط الموائل القاعية، والتي تنطوي على الحصول على بيانات متعددة الحزم وجمع بيانات الصور وتعليقها يدويًا، تستغرق وقتًا طويلاً. ومع ذلك، مع التقدم التكنولوجي، أصبح استخدام خوارزميات التعلم الآلي (ML) مع المسح التصويري للبنية من الحركة (SfM) نهجًا واعدًا لرسم خرائط الموائل القاعية بدقة وبدقة عالية جدًا. تستكشف هذه الورقة استخدام المسح التصويري SfM ومصنف تعزيز التدرج الشديد (XGBoost) لرسم خرائط ثلاثية الأبعاد للموائل القاعية لجدار عمودي في منطقة صدع تشارلي جيبس في شمال المحيط الأطلسي. بدأ سير عمل التصنيف باستخراج الإطارات من لقطات الفيديو. ثم تم تطبيق SfM لإعادة بناء السحابة النقطية ثلاثية الأبعاد للجدار. بعد ذلك، تم اشتقاق تسع سمات هندسية من هندسة السحابة النقطية ثلاثية الأبعاد. ثم تم استخدام مصنف XGBoost لتصنيف الجدار الرأسي إلى صخور وإسفنج وشعاب مرجانية (الحالة 1 - ثلاث فئات). بالإضافة إلى ذلك، قمنا بفصل فئة الإسفنج إلى ثلاثة أنواع من الإسفنج: Demospongiae، Hexactinellida، وغيرها من Porifera (الحالة 2 - خمس فئات). علاوة على ذلك، قارنا النتائج من XGBoost مع مصنف ML المستخدم على نطاق واسع، الغابة العشوائية (RF). بالنسبة للحالة 2، حققت XGBoost دقة إجمالية (OA) بنسبة 74.45 ٪، في حين حققت RF 73.10 ٪. تحسن الوصول المفتوح بحوالي 10 ٪ من كلا المصنفين عندما تم دمج الأنواع الثلاثة من الإسفنج في فئة واحدة (الحالة 1). أظهرت النتائج أن الخرائط ثلاثية الأبعاد المقدمة للموائل القاعية لديها القدرة على توفير معلومات أكثر تفصيلاً ودقة حول النظم الإيكولوجية البحرية.

Translated Description (English)

Abstract. Benthic habitats mapping is essential to the management and conservation of marine ecosystems. The traditional methods of mapping benthic habitats, which involve multibeam data acquisition and manually collecting and annotating imagery data, are time-consuming. However, with technological advances, using machine learning (ML) algorithms with structure-from-motion (SfM) photogrammetry has become a promising approach for mapping benthic habitats accurately and at very high resolutions. This paper explores using SfM photogrammetry and extreme gradient boosting (XGBoost) classifier for benthic habitat 3D mapping of a vertical wall at the Charlie-Gibbs Fracture Zone in the North Atlantic Ocean. The classification workflow started with extracting frames from video footage. The SfM was then applied to reconstruct the 3D point cloud of the wall. Thereafter, nine geometric features were derived from the 3D point cloud geometry. The XGBoost classifier was then used to classify the vertical wall into rock, sponges, and corals (Case 1 - three classes). In addition, we separated the sponges class into three types of sponges: Demospongiae, Hexactinellida, and other Porifera (Case 2 - five classes). Moreover, we compared the results from XGBoost with the widely used ML classifier, random forest (RF). For Case 2, XGBoost achieved an overall accuracy (OA) of 74.45%, while RF achieved 73.10%. The OA improved by about 10% from both classifiers when the three types of sponges were combined into one class (Case 1). Results showed that the presented 3D mapping of benthic habitat has the potential to provide more detailed and accurate information about marine ecosystems.

Translated Description (French)

Résumé. La cartographie des habitats benthiques est essentielle à la gestion et à la conservation des écosystèmes marins. The traditional methods of mapping benthic habitats, which involve multibeam data acquisition and manually collecting and annotating imagery data, are time-consuming. However, with technological advances, using machine learning (ML) algorithms with structure-from-motion (SfM) photogrammetry has become a promising approach for mapping benthic habitats accurately and at very high resolutions. This paper explores using SfM photogrammetry and extreme gradient boosting (XGBoost) classifier for benthic habitat 3D mapping of a vertical wall at the Charlie-Gibbs Fracture Zone in the North Atlantic Ocean. The classification workflow started with extracting frames from video footage. The SfM was then applied to reconstruct the 3D point cloud of the wall. Thereafter, nine geometric features were derived from the 3D point cloud geometry. The XGBoost classifier was then used to classify the vertical wall into rock, sponges, and corals (case 1 - three classes). In addition, we separated the sponges class into three types of sponges : Demospongiae, Hexactinellida, and other Porifera (Case 2 - five classes). Moreover, we compared the results from XGBoost with the widely used ML classifier, random forest (RF). For Case 2, XGBoost achieved an overall accuracy (OA) of 74.45%, while RF achieved 73.10%. The OA improved by about 10% from both classifiers when the three types of sponges were combined into one class (Case 1). Results showed that the presented 3D mapping of benthic habitat has the potential to provide more detailed and accurate information about marine ecosystems.

Translated Description (Spanish)

Resumen. El mapeo de hábitats bentónicos es esencial para la gestión y conservación de los ecosistemas marinos. The traditional methods of mapping benthic habitats, which involve multibeam data acquisition and manually collecting and annotating imagery data, are time-consuming. However, with technological advances, using machine learning (ML) algorithms with structure-from-motion (SfM) photogrammetry has become a promising approach for mapping benthic habitats accurately and at very high resolutions. This paper explores using SfM photogrammetry and extreme gradient boosting (XGBoost) classifier for benthic habitat 3D mapping of a vertical wall at the Charlie-Gibbs Fracture Zone in the North Atlantic Ocean. The classification workflow started with extracting frames from video footage. The SfM was then applied to reconstruct the 3D point cloud of the wall. Thereafter, nine geometric features were derived from the 3D point cloud geometry. The XGBoost classifier was then used to classify the vertical wall into rock, sponges, and corals (Case 1 - three classes). In addition, we separated the sponges class into three types of sponges: Demospongiae, Hexactinellida, and other Porifera (Case 2 - five classes). Moreover, we compared the results from XGBoost with the widely used ML classifier, random forest (RF). For Case 2, XGBoost achieved an overall accuracy (OA) of 74.45%, while RF achieved 73.10%. The OA improved by about 10% from both classifiers when the three types of sponges were combined into one class (Case 1). Results showed that the presented 3D mapping of benthic habitat has the potential to provide more detailed and accurate information about marine ecosystems.

Files

isprs-annals-X-1-W1-2023-1131-2023.pdf.pdf

Files (1.2 MB)

⚠️ Please wait a few minutes before your translated files are ready ⚠️ Note: Some files might be protected thus translations might not work.
Name Size Download all
md5:b16695ee47cb2b60cf8e073ca13a8a48
1.2 MB
Preview Download

Additional details

Additional titles

Translated title (Arabic)
رسم الخرائط ثلاثية الأبعاد للموائل القاعية باستخدام XGBOOST والهيكل من التصوير الفوتوغرافي للحركة
Translated title (English)
3D MAPPING OF BENTHIC HABITAT USING XGBOOST AND STRUCTURE FROM MOTION PHOTOGRAMMETRY
Translated title (French)
CARTOGRAPHIE 3D DE L'HABITAT BENTHIQUE À L'AIDE DE XGBOOST ET DE LA STRUCTURE À PARTIR DE LA PHOTOGRAPHIE EN MOUVEMENT
Translated title (Spanish)
3D MAPPING OF BENTHIC HABITAT USING XGBOOST AND STRUCTURE FROM MOTION PHOTOGRAMMETRY

Identifiers

Other
https://openalex.org/W4389395412
DOI
10.5194/isprs-annals-x-1-w1-2023-1131-2023

GreSIS Basics Section

Is Global South Knowledge
Yes
Country
Egypt